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FOREWORD 

This report is one of several to be published from research conducted 

under NASA Contract NAS8-31773 entitled, "Relationships Between Severe 

Storms and Their Environment." Several of these studies are referenced in 

this report. This effort is sponsored by the NASA Office of Applications 

under the direction of Marshall Space Flight Center's Atmospheric Sciences 

Division. The results presented in this report represent only a portion 

of the total research effort. 

Since 1964, NASA has conducted nine Atmospheric Variability Experiments. 

An overall goal of the AVE program is to investigate the temporal and 

spatial variability of atmospheric parameters associated with synoptic and 

mesoscale systems normally indicated using data available at 12-h intervals. 

Of particular interest in many of the AVE experiments has been the deter- 

mination of the interrelationships between convective storms and their 

synoptic-scale environment. Extensive diagnostic analyses of AVE II and 

AVE IV have produced results which further the understanding of these 

"scale interaction" processes between synoptic, mesoscale, and convective- 

scale systems. Since the analysis of each AVE only represents a single case 

study, a compilation of results from many experiments, under varying 

conditions, is needed to establish general relationships about the atmosphere. 

This report contains four diagnostic studies of AVE III. AVE III 

represents a high wind speed wintertime situation, while most A&s analyzed 

previously represented springtime conditions with rather low wind speeds. 

The general areas of analysis include the examination of budgets of vorticity, 

moisture, kinetic energy, and potential energy, and a synoptic and 

statistical study of the horizontal gradients of meteorological parameters. 

Conclusions are integrated with and compared to those obtained in previously 

analyzed experiments (mostly springtime weather situations) so as to estab- 

lish a more definitive understanding of the structure and dynamics of the 

atmosphere under a wide range of synoptic conditions. 
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AVE III DATA/GENERAL ANALYTICAL PROCEDURES, 
AND SYNOPTIC CONDITIONS 

Gregory S. Wilson 
Department of Meteorology 

Texas A&M University 
College Station,,Texas 77843 

ABSTRACT 

This chapter contains a discussion of the AVE III data, procedures 

used to grid basic data, compute vertical motion, and numerically evaluate 

equations, and a description of synoptic conditions for AVE III. 

The AVE III data are discussed in regard to station locations and 

approximate RMS errors. Other data considered include NWS surface data 

and Manually Digitized Radar (MDR) data, 

The information presented in this chapter is common to the studies 

presented.in Chapters 2-5. 



CHAPTER 1. AVE III DATA, GENERAL ANALYTICAL PROCEDURES, 
AND SYNOPTIC CONDITIONS 

1.1 AVE III Data 

1.1.1 Rawinsonde data 

The forty-two rawinsonde stations participating in the AVE III 

experiment are shown in Fig. l-l. Soundings were taken at nine times: 

6 February at 0000 GMT, 0600 GMT, 1200 GMT, 1500 GMT, 1800 GMT, and 2100 

GMT, and on 7 February at 0000 GMT, 0600 GMT, and 1200 GMT, 1975. 

J -.-- ‘, 

\ F2 
0 ik/- . 

L..--- 
_ .6-%J,m 

I 
1 562 a. 

‘4 
533 y--- 

i 1 349 
I 421 :/--- .--- /AL-“..---‘- , ,--i- -0 

.-e--y ,.----I 
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-L&e----~Ir..--- 

I 260 
;,c7248 
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i 265 
r.-- -..-J 0 

Fig. l-l. Rawinsonde stations 
AVE III experiment. 

participating in the 

Data reduction procedures used to process the AVE III rawinsonde data 

were designed to obtain the most accurate results possible (Fuelberg, 1974). 

The raw angle and ordinate data were checked for errors prior to calculating 

the soundings, and computed soundings then were rechecked with corrections 

made as required. Data were given at 25-mb intervals by Fuelberg and Turner 

(1975). Estimates of RMS errors of the thermodynamic quantities are given in 

Table l-l (Scoggins and Smith, 1973; Fuelberg, 1974). Recent studies have 
indicated that errors in the thermodynamic quantities may be even smaller than 

those given in Table l-l (Denhard, 1973; Brousaides, 1975). 
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Table l-l. RMS errors of thermodynamic quantities for the AVE III data. 

Parameter Approximate RMS error 

Temperature 

Pressure 

Humidity 

Pressure Altitude 

l°C or less 

1.3 mb surface to 400 mb 
1.1 mb between 400 and 100 mb 
0.7 mb between 100 and 10 mb 

10% 

10 gm at 500 mb 
20 gpm at 300 mb 
50 gpm at 50 mb 

An error analysis conducted by Fuelberg (1974) gave RMS errors of scalar 

wind speed and wind direction for the AVE III baroswitch contact data. Table 

l-2 presents these RMS errors for elevation angles of 40° and 20'. RMS errors 

for the smoothed 25-mb data that were used in this-study would be somewhat 

smaller. 

Table 1-2. RMS errors of baroswitch contact wind data for the AVF IV data 
at elevation angles of 40° and 20°. 

Level 
Elevation Angle 
400 200 

RMS Direction Error 

Elevation Angle 
4o" 2o" 

RMS Speed Error 

700 mb 1.8' 3.8O 0.5m s -1 1.0 -1 m s 
500 mb 2.5O 5.6O 0.8 m s -1 2.0 m s -1 

300 mb 3,1° 7.5O l.Om s -1 3.8 -1 m s 

100 mb 6.2' 15.0° 2.0 m s -1 5.7 -1 m s 

Original strip charts from all rawinsonde soundings were checked 

carefully to determine if sondes entered thunderstorm updrafts or downdrafts. 

Under these conditions, soundings were removed from the original data set 

because the sondes apparently had entered violent updrafts. The potential 

for distorted results due to nonhydrostatic accelerations was thereby 

considerably reduced. 
3 



1.1.2 Surface data 

All available surface data for the AVE III experiment were obtained 

from the National Climatic Center. Figure 1-2 shows locations of the 310 

surface stations used. Vector wind, temperature, dew point temperature, and 

surface pressure were read, keypunched, and checked carefully for errors. 

Fig. l-2. Locations of surface stations for the AVE III area. 

Hourly precipitation data were also obtained for the AVE III time 

period from the Xational Climatic Center. These data consisted of nearly 

2000 raingage reports and were used in the precipitation analysis. 

1.1.3 Digital radar data -- 
Manually Digitized Radar (MDR) data were obtained from NOAA'S 

Techniques Development Laboratory to determine accurately the intensity and 

position of the radar-observed convection during the AVE III experiment. 

The MDR grid network is shown in Fig. l-3. MDR data are coded with a single 

digit from @ to 9 to indicate area1 coverage and echo intensity within blocks 

that are approximately 83 km on a side. Table l-3 is an explanation of the 

MDR coda given by Foster and Reap (1973). 

Plots of the MDR data were made each hour for 3-h periods centered 

on each of the nine rawinsonde observation times. The three plots were then 
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Fig. 1-3. Manually Digitized Radar (MDRI grid network. 



Table 1-3. Manually digitized radar (MDR) data code (Foster and Reap, 1973). 

Maximum Coverage Maximum 
Code No. Obferved Intensity 

VIP. Values In Box Rainfall 
Rate (in h-l) Category 

7 

8 5 or 6 

9 5 or 6 

No Echoes 

1 

2 

2 

3 

3 

4 

4 

Any VIP1 

si 50% of VIP2 

> 50% of VIP2 

L 50% of VIP3 

> 50% of VIP3 

i 50% of VIP3 
and 4 

> 50% of VIP3, 
and 4 

1. 50% of VIP3, 
4, 5, and 6 

> 50% of VIP3, 
4, 5, and 6 

co,1 Weak 

0.1-o-5 Moderate 

0.5-1.0 Moderate 

l-O-2.0 Strong 

l-O-2.0 Strong 

1.0-2.0 Very Strong 

1.0-2.0 

>2.0 

>2.0 

Very Strong 

Intense or 
Extreme 

Intense or 
Extreme 

1 Video Integrator Processor 

combined into a single chart for each of the nine times by using the highest 

coded value reported for each block (see Appendix for AVE. III composite MDR 

charts). 

1.2 General Analytical Procedures 

Analytical procedures can determine the success or failure of an 

experiment and, therefore, must be considered carefully. This section outlines 

the procedures that were judged most advantageous for these studies. 

1.2.1 Objective analysis and smoothing 

The diagnostic analyses performed in AVE III are simplified if data 

are interpolated from randomly-spaced rawinsonde stations to equally-spaced 

grid points. The grid network used (Fig. l-4) is centered over the AVE III 

data area and has a spacing of 158 km. Barr et al. (1971) have shown -- 
theoretically that a 169-km grid interval incorporates as much detail as is 

justified from the rawinsonde network over the United States. 

Human analysis of data iS still preferable to any objective scheme 

that has been devised, but the number of analyses required rendered hand 

6 



^... .--. _ 

Fig. l-4. Grid used for numerical computations. 

analysis unfeasible for these studies. There were several considerations in 

the choice of an objective analysis and smoothing procedure from the several 

that are described in the literature. Such a procedure should interpolate 

data accurately from stations to the grid without creating fictitious waves 

or destroying real waves present in the data. Also, the desired results of 

the procedure should be considered carefully with respect to the input data 

density. Since the average spacing of rawinsonde stations over the eastern 

United States is about 350 lcn, features with wavelengths shorter than 1400 km 

can seldom be described completely by any objective analysis using this 

input data. 

An objective analysis scheme by Barnes (1964) was used in these inves- 

tigations. The procedure is commonly referred to as successive corrections 

to a first-guess field. Data from each rawinsonde station were allowed to 

influence grid points within a scan radius of three grid distances while 

four iterations were allowed. 

To suppress small waves which cannot be tracked consistently, as 

well as those which might arise due to the analysis scheme and random errors, 
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a light nine-point filter by Shuman (1957) was applied to the analyzed fields. 

The final result retained approximately 90% of the amplitudes of wavelengths 

of 1400 km, and appeared to contain as much detail as could be justified 

from the input data based upon good agreement with hand analyses. 

The surface data were analyzed using a scan radius of two grid units 

with four iterations. This produced smooth fields from the high density 

surface data that meshed with the larger-scale rawinsonde data. 

Gridded analyses of height, temperature, wind components, and moisture 

content were produced at 18 levels, i.e., the surface and at 50-n& intervals 

from 900 mb to 100 mb, for each of the nine time periods. Winds at the 18 

levels were averaged over 50 mb to reduce further random errors, These 

gridded values were stored on a computer disk and formed the working data set 

for all phases of each of the studies. 

1.2.2 Numerical evaluation of equations - 
Centered finite differences were used in each study to compute 

horizontal and vertical derivatives except those at the surface where forward 

differences were used and at 100 mb where backward differences were used. 

Time derivatives also were evaluated using centered differences where 

possible, but forward differences at the first period and backward differences 

at the last period were required. Numerical evaluations were performed on 

the Amdahl 47OV/6 computer at Texas A&M University. 

1.2.3 Computation of vertical motion - 
Large-scale vertical motion cannot be measured directly, and no method 

currently available for determining vertical motion is completely accurate. 

The kinematic method was used in this research because it involved the least 

stringent assrnnptions and produced good results, Details of the procedures 

used are given by Wilson and Scoggins (1976) and Wilson (1976). Terrain- 

induced vertical motion was included, and a correction scheme by O'Brien 

(1970) was applied so the values of vertical motion at 100 mb would equal 

the values obtained by the adiabatic method. The adjustment factor 

significantly affects vertical motion in levels above about 500 mb, Applica- 

tion of an adjustment factor is necessary b<cause the accuracy of wind data 

and resulting divergence calculations decrease with altitude. Adiabatic 

values at 100 mb were chosen because they are obtained independently of 

kinematic values and are more realistic than an assumption of zero at each 

grid point. 



The kinematic method has been used widely in previous research. 

Vincent et al. (1976) suggested that it is better than the quasi-geostrophic -- 
form of the omega equation. Further support for the kinematic method has 

been given by such investigators as Chien and Smith (1973), Smith (1971), 

Fankhauser (1969), and Kung (1973). Moreover, Wilson (1976) indicated that 

values of kinematic vertical velocity related better to areal coverage and 

intensity of precipitation during the AVE IV experiment than did values of 

adiabatic vertical velocity. 

1.3 Synoptic Conditions in AVE III 

Two frontal systems were present in the AVE III area at the beginning 

of the experiment, 0000 GMT 6 February 1975 (Fig. l-5). A warm front ex- 

tending across Georgia and a cold front extending from the Florida panhandle 

southwestward into the Gulf of Mexico separated maritime tropical (mT) 

air from maritime polar (mP) air. The second frontal system extended 

southwestward from a cyclone in Pennsylvania to the Texas Gulf Coast and 

separated the mP air from much colder continental arctic (CA) air. Northerly 

flow around a surface anticyclone located in Montana sent temperatures 

plunging as low as -2O'C in the Northern Plains States. Most of the AVE III 

area was covered by dense cloud cover. Pain showers and drizzle occurred 

along the East Coast while rain showers and a few thunderstorms were located 

over Florida. An extensive area of light snow was occurring in the CA 

air over the Midwest States and the Ohio River Valley. 

A broad trough dominated the middle- and upper-tropospheric flow 

over North America. The jet stream with wind speeds as great as 90 m s -1 

extended from the New England States southwestward into Texas. 

Surface and upper-air systems moved slowly eastward during the AVE III 

period. Showers and thunderstorms occurred from Louisiana to South Carolina 

in association with the advancing frontal systems., By 1200 GMT 7 February 

the fronts were located over the Florida peninsula (Fig. l-6). A large 

anticyclone, centered over East Texas, dominated the surface circulation. 

Light snow occurred from New England into the Applachians, but clear skies 

were reported in the AVE III area west of the Mississippi River. The broad 

trough continued to dominate the upper-level flow pattern, but the trough 

axis had moved east of the center of the AVE III area. 



~mb,OOOo GMT, 6 FEE 1975 

Fig. 1-5. Qmptic 
6 February 1975 

conditions at 0000 GMT 
. 
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Fig. l-6. Synoptic conditions at 1200 GMT 
7 February 1975. 
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VORTICITY IMBALANCE AND STABILITY IN AVE III 

William L. Read* 
Department of Meteorology 

Texas A&M University 
College Station, Texas 77843 

ABSTRACT 

The synoptic scale vorticity budget and an analysis of instability by 

the use of indices were related to convective storm development during 

AVE III as was done previously for AVE IV. AVE III is a wintertime case; 

AVE IV a springtime case. The results show that stability is a better 

indicator of intense convection during AVE III than during AVE IV; the 

kinematics associated with vorticity budget calculations show the same 

features in both cases; the stability indices developed from the AVE IV 

data outlined convective areas well in AVE III but too small values were 

obtained for nonconvective areas; and large imbalances in the vorticity 

budget reflected by the residual term show systematic, wave-like patterns 

along 'the jet stream that may be related to sub-grid scale systems. 

*Presently employed by National Weather Service, San Antonio, Texas. 
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CHAFTER2. VORTICITY IMBALANCE AND STABILITY IN AVE III 

2.1 Introduction 

This work is a second case study on determining synoptic-scale features 

that lead to convective precipitation. The first case study (Read and 

Scoggins, 1977) utilized rawinsonde and surface data taken during the AVE IV 

experiment. The AVE IV synoptic situation was typical of springtime severe 

storm cases and, therefore, provided widespread convection for study. In 

this second case study, an entirely different synoptic situation was used in 

order to investigate differences from the AVE IV case. The AVE III experiment, 

conducted on 6 and 7 February 1975, was a typical East Coast winter storm 

pattern, with intense convection confined to South Florida and non-convective 

precipitation occurring elsewhere. 

The elements of this study are the same as in the first case. They in- 

clude calculations of a vorticity budget using the complete vorticity equation, 

stability fields in the lower troposphere using lapse rate of equivalent 

potential temperature, and thunderstorm potential indices using combined 

fields of vorticity and stability terms. In the first case study, average 

profiles as a function of different intensities of convection were prepared 

for the various parameters above to establish general relationships. This 

same procedure was used for AVE III. However, due to the relatively small 

area of intense convection and its location, emphasis will be on comparing 

results in non-convective areas to those observed in AVE IV. 

2.2 Analytical Methods 

2.2.1 Vorticity equation 

The development of synoptic-scale cyclonic circulations during the 

AVE III experiment was studied by use of the vorticity budget. The equation 

for the rate of change in the vertical component of the curl of velocity is 

1 2 3 4 .5 
ix.3 .$ as 
at PP (5 + f) + 5 = -(< + f)ifp'Gp + 2% - gz 

where term 1 is the local time rate of change of relative vorticity, term 2 

the advection of absolute vorticity on isobaric surfaces, term 3 the vertical 

advection of vorticity, term 4 the production of absolute vorticity through 

+ L ; xz, (2-l) 
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divergence, terms 5 the transfer of vorticity between horizontal and vertical 

axes and are called the twisting terms , and term 6 the vorticity production 

by friction. In this study, term 6 will be solved for as a residual and 

will represent imbalance between the total derivative and synoptic-scale 

sources of vorticity in Eq. (2-l). Terms l-5 represent contributions by mean 

quantities while the residual represents a combination of perturbation 

quantities, viscous friction, measurement error, and computational error 

(truncation). 

2.2.1.1 Computational procedures 

The vorticity budget was computed for the surface-, 850-, 700-, 500-, 

and 300-a& levels. All terms in the equation were computed at each level 

except at the surface where terms involving w were neglected. Terns in Eq. 

2-l were evaluated at each grid point from the analyzed fields of u and v 

.wind components. Vertical motion was computed using the kinematic method 

with an adjustment technique developed by O'Brien (1970) applied to smooth the 

effect of errors that accumulate when integrating the continuity equation. 

Boundary values used were terrain-induced vertical motion at the surface 

and the adiabatic vertical motion at 100 mb, as given by Panofsky (1959). 

The time derivative in Eq. 2-l was approximated by centered finite 

differences except at the initial time, where a forward difference was applied, 

and the last time where a backward difference was applied. All horizontal 

and vertical spatial derivatives were approximated by centered finite 

differences. The depth interval used to approximate vertical derivatives was 

200 mb. 

2.2.1.2 Method of presentation of results - - 
The error analysis indicated that individually analyzed fields of terms 

in the vorticity equation could contain significant error. In order to 

develop relationships between the terms of Eq. 2-l and convection, and to 

reduce the effect of random errors, parameters were averaged over all nine 

times for several categories of convection. 

The categories of convection were based on the MDR code with MDR<l 

representing no convection, MDR>2 representing all convection, MDRz4 

representing thunderstorms, and MDR>8 representing severe thunderstorms. 

First, grid point values of MDR data had to be determined for each time. 

From the cornposited MDR charts the maximum MDR values within a scan radius 

of one grid distance from each grid point was chosen to be the MDR value at 

that grid point. Averages of each term were then computed for each MDR 
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category. Averages were computed for each level and graphs were prepared 

showing the vertical distribution of average values of terms in the vorticity 

equation. 

Operational 12-h sounding intervals rarely allow one to study atmospheric 

conditions prior to initial development-of thunderstorms. With 12-h data, 

extrapolation of conditions over an unacceptable length of time frequently 

is done. The 3- and 6-h intervals in AVE III provide the opportunity to 

examine synoptic conditions before thunderstorms develop. To test these 

conditions, average values of the terms,in the vorticity equation were computed 

for 3- and 6-h lags in MDR fields, This was done by comparing the gridded 

. fields of terms in the vorticity equation at each time with the observed 

convection 3- and 6-h later. Differences between these profiles and the ones 

for zero lag give an indication of how long favorable conditions on the 

synoptic scale exist prior to the development of thunderstorms. This also 

indicates what large scale changes take place, if any, in areas of convection 

after thunderstorm development. 

In order to determine the usefulness of general relationships between 

convection and terms in the vorticity equation, individually analyzed fields 

were examined. Examples are presented and discussed below. 

2.2.2 Stability 

2.2.2.1 Computational procedure 

A convectively unstable layer of air is required for thunderstorm develop- 

1 ment. The average tornado sounding presented by Miller (1967) indicates the 

presence of a dry, subsidence inversion in the lower troposphere with convective 

instability being greatest in the layer containing the inversion. In this 

research three layers, one generally below the inversion, one containing the 

inversion, and one above the inversion, were used to compute convective 

instability. Stability in each layer was compared to radar-observed convective 

activity. 

The three layers used were the surface to 850 mb, 850 to 700 mb, and 

700 to 500 mb. In addition, convective instability in the layer from the 

surface to 500 mb was computed to see if a deep layer measurement adequately 

described the stability requirement. Convective instability, (5,' was defined 

by - 
* 
ap 

, where 0 e is equivalent potential temperature. Grid point values 

of 0 e were computed at the top and bottom of each layer using gridded fields 

of temperature and dew point temperature. ce was evaluated by finite 



differences from grid point values of oe with Ap equal to the difference 

between the pressures at the top and bottom of each layer. 

2.2.2.2 Method of presentation of results - - 
General relationships between convective instability and thunderstorms 

were developed in the same fashion as the vorticity budget. Averages for 

zero lag were computed to investigate synoptic-scale instability in areas of 

observed convective activity while averages for 3- and 6-h lags in MDR data 

were used to study conditions prior to thunderstorm development. 

Individually analyzed fields were used to establish whether the 

general relationships hold for specific time periods, and to study changes in 

stability during the life cycle of convective systems. 

2.2.3 Thunderstorm Potential Indices 

2.2.3.1 Rationale 

As shown in previous studies , neither stability nor kinematic parameters 

alone provide a very good analysis or forecast tool for severe weather. Wilson 

and Scoggins (1976) showed that, by combining an index of stability with 

vertical motion, a substantial improvement in depicting severe thunderstorms 

could be achieved. Statistical techniques used by the weather services combine 

many observed and forecast parameters in making a severe weather forecast. 

Endlich and Mancuso (1968) have developed indicators for severe weather by 

combining scaled parameters of moisture, stability, and kinematics into a 

single parameter. Analyzed fields of these indicators correlated better with 

convection than did the individual parameters that made up the indicator. 

In this study an index was developed to combine, in a simple manner, 

the effects of moisture, stability, and vorticity development. Since this 

is only one case study, no attempt is made to develop exact statistical 

relationships of the type used by the National Weather Service (Charba, 1975). 

The combinations were chosen based on physical reasoning with essentially 

equal weight placed on each input parameter. 

A direct measure of moisture was required since the vorticity equation 

is independent of moisture and ce considers only the vertical distribution of 

moisture. Wilson and Scoggins (1976) found boundary layer moisture to 

correlate best with observed thunderstorms; therefore, in this study the 

average mixing ratio G from the surface to 850 mb was used as a moisture 

parameter. 

Terms in the vorticity equation indicating development of circulation 

systems are expected to correlate best with areas of convection. In the 
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lower levels, terms involving w and its gradients are generally negligible 

on the synoptic-scale. Horizontal advection should be smaller than the 

divergence term due mainly to smaller wind speeds. In the lower levels the 

dominating terms are the local derivative, divergence term, and friction. 

For use in an index, the divergence term was preferred since it relates to 

a source of vorticity in the lower layers. 

In the middle and upper troposphere , the dominant terms in the vorticity 

equation are horizontal advection, divergence, and the local derivative of 

vorticity. From scale analysis, terms involving w should be small compared 

to the other terms. If the equation is applied at the level of non-diver- 

gence, usually near 500 mb, development of circulation is primarily due to 

vorticity advection [? 3 PP (5 + f)l- In the presence of vorticity production 

by convergence, such development would be enhanced. However, error analysis 

(Read and Scoggins, 1977) indicates that, at the upper levels, the divergence 

term is considerably more in error than the horizontal advection term. Hence, 

vorticity advection at 500 mb is the preferred vorticity development input to 

the index. 

As stated earlier, instability is an essential criterion for thunder- 

storm development. The exact layer in which this instability should exist 

for maximum development is not known and probably varies for different cases. 

In many cases, boundary layer instability is probably most important, while 

with strong lifting, upper-level instability may be important. The depth 

of the layer of instability is certainly of importance and the indices developed 

include this as well as the instability observed in the boundary layer and 

aloft. 

2.2.3.2 Definitions 

Three initial indices were formed, two representing lower tropospheric 

synoptic conditions and one representing upper-level conditions. Two 

thunderstorm potential indices were formed by adding each of the low-level 

indices separately to the upper-level index. 

The low-level indices (LLI) were computed using the follotiing fOImdaS; 

LLI 1 = [OX + (5 + f) (~p-~p)*lB, and 
eSfc-850 

(2-Z) 

LIJ, 2 = ICI* 
e850-700 

+ (r + f) (~p-k)*lG, (Z-3) 
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where an overbar indicates an average from the surface to 850 mb, and * 

indicates that the quantities have been scaled by their standard deviation 

as was done by Endlich and Mancuso (1968). Scaling was required due to the 

different orders of magnitudes of the stability and vorticity terms. In 

order to obtain the proper effect of moisture , average specific humidity 

(or mixing ratio) was used as a multiplier instead of being added to the 

index. Simply adding the term to the index would not effectively reduce 

the potential for thunderstorm development in areas where insufficient moisture 

was observed. 

High negative values of either index indicate moist, unstable air 

and vorticity production occurring at the same point. Where these factors 

occur simultaneously, environmental conditions in the lower troposphere are 

excellent for thunderstorm development. 

The upper level index (ULI) was defined by 

ULI = [a* 
e700-500 

+ 6’3pt< + fIXl;i, 

where symbols have the same meaning as for the low-level index. Since dry, 

low-level regions often exhibit unstable conditions between 700 and 500 mb 

as well as positive vorticity advection at 500 mb, the low-level average mix- 

ing ratio, S, was used to reduce the effect of strong advection in areas of 

low moisture content. Again, areas that have large negative values of the 

upper index are areas of upper-level instability and positive vorticity 

advection above a moist boundary layer. 

The two Thunderstorm Potential Indices (TPI) are given by 

TPI 1 = LLI 1 + ULI, and (2-S) 

TPI 2 = LLI 2 + ULI. (z-6) 

Minimum values of each occur where moist , unstable air with production of 

vorticity in the lower troposphere is located beneath regions of mid-tropospheric 

instability and positive vorticity advection. 

2.2.3.3 Method of presentation of results - - 
Fields of the low level, upper level, and thunderstorm potential 

indices were examined for correlation with thunderstorm activity to assess the 

improvements compared with the use of individual parameters of stability and 

vorticity production. Comparison between upper-level and lower-level indices 

was done to determine which was better at depicting severe weather development. 

20 



Analyzed fields are presented to show the effectiveness of the 

indices for outlining areas of convective activity. Subjective comparison 

between index fields and observed MDR values will be used to test the 

effectiveness of the indices. 

2.3 Results 

2.3.1 Average profiles 

2.3.1.1 Stability 

Figure 2-1 shows the average values of the four measures of cTe for 

different categories of observed MDR data. This chart indicates the presence 

of the large stable air mass behind the cold front in AVE III. The noncon- 

vective (MDsl) areas show large positive (stable) values in all layers. 

In areas of convection the boundary layer was unstable while upper layers 

were either neutral or slightly stable. In spite of the fact that only a few 

grid points had MDR values from 4-9, there appears to be a trend towards 

decreasing stability with increasing thunderstorm intensity in all layers. 

In the springtime case of AVE IV, there were two major differences, 

V&, the nonconvective areas were unstable and convective areas exhibited 

greater instability in the middle and upper layers. For the springtime 

case, stability was deemed a poor indicator of intense convection. However, 

the results for AVE III indicate that stability, at least in the boundary 

layer, is an excellent prediction of wintertime convection. 

The areas in AVE III where convection eventually developed exhibited 

an unstable lower troposphere both three and six hours prior to the initial 

development of convection (Figs. 2-2a and 2-2b). This result is similar to 

the results of the springtime case emphasizing the need for a trigger 

mechanism to release the instability. 

2.3.1.2 Vorticity budget 

In the AVE IV study, average profiles of the local time derivative of 

vorticity indicated cyclonic tendencies at all levels in areas of convection. 

The profiles for the AVE III case indicate that cyclonic tendencies in areas 

of convection were confined to the lower levels below 700 mb (Fig. 2-3). Only 

the MDR 2-9 category had cyclonic tendency at all levels. 

Profiles for horizontal advection of vorticity for the AVE III case 

indicate that, in areas of convection, large negative values are confined to 

the upper levels (Fig. 2-4). In non-convective areas large positive values 

were observed. These results are essentially the same as in the AVE IV case. 
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Terms involving vertical motion were found to be negligible when 

considering the average vorticity budget in AVE IV. The same magnitudes for 

the vertical advection and twisting terms were found for the AVE III case 

(Figs. not shown). 

In the springtime case, the divergence term was the dominant term both 

in the lower and upper troposphere in areas of convective activity. In AVE 

III the divergence term is dominant at the surface but is smaller than horizontal 

advection at 300 mb (Fig. 2-5). Non-convective areas show an opposite pro- 

file for this term for both cases. Profiles of the total derivative and sum 

of divergence and twisting terms for AVE III (not shown) are essentially the 

same as the profiles of the horizontal advection and divergence terms, 

respectively. 

I I I 1 I 1 I I I I I 

2 7oot ---Non Conv 

Fig. 2-5. Average profiles of the divergence term. 

In AVE IV, profiles of the residual in areas of convection revealed 

large negative imbalances in the lower levels and large positive imbalances 

at 300 mb. It was concluded that the sub-grid scale processes were respon- 

sible for maintaining balance in the vorticity budget. The AVE III case 

study reveals that both lower and upper levels have negative residuals 

(Fig. 2-6). In the lower levels this represents large positive values of 

the divergence term not being balanced by advection or large cyclonic 

tendencies. The difference between AVE III and AVE IV is that more negative 

values of advection and less negative values of the divergence term occurred 

during AVE III at 300 mb. This possibly resulted because strong wind speeds 
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Fig. 2-6. Average profiles of the residual. 

and large shears in AVE III contributed to larger values of advection with- 

out increasing the divergence term. More studies of both springtime and 

wintertime cases would be required to determine if this difference is 

significant. 

Profiles of terms in the vorticity equation three and six hours prior 

to initial development were prepared as in the AVE IV case. Figure 2-7 shows 

3- and 6-h lag averages for the local derivative. Low-level cyclonic 

tendencies occur 3 h but not 6 h prior to initial development, indicating that, 

in the AVE III case, cyclonic development occurs shortly before initial 

thunderstorm development. In AVE IV cyclonic tendencies were evident both 

three and six hours prior to convective activity. 

Profiles of horizontal vorticity advection three and six hours prior 

to initial convective activity closely resemble the profiles at zero lag, with 

slightly smaller magnitudes (Fig. 2-8). For areas of convection, only the 

upper levels above 500 mb experience positive vorticity advection 

[negative k=?p(< + f)], while the opposite is true for non-convective areas. 

As in the springtime case, positive upper-level advection was a maximum 

three hours prior to initial development. Also, the 6-h lag profiles showed 

no significant difference between convective and non-convective areas. 

Profiles of the divergence term for AVE III three and six hours prior 

to thunderstorm development are shown in Fig. 2-9, There is a significant 

difference between convective and non-convective areas. Low-level convergence 
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is present for convective areas up to six hours prior to initial formation 

while non-convective areas remain divergent. Opposite conditions exist 

aloft. These results are virtually the same as in AVE IV. 

The 3- and 6-h lag profiles of the residual show that a systematic 

imbalance occurs as much as six hours prior to thunderstorm development in 

both the boundary (surface to 850 mb) and upper levels (Fig. 2-10). In the 

lower levels, large values of the divergence term are not balanced by either 

large-scale advection or cyclonic tendencies. Again, this is the same 

result as in AVE IV. The upper levels have large negative values because 

large values of horizontal advection are not being balanced by either cyclonic 

tendencies or divergence. This differs somewhat from AVE IV, when advection 

was smaller aloft. The more intense jet stream in the AVE III case probably 

is the cause of larger values of advection. Subgrid scale kinematic features 

may again be responsible for restoring balance, since turbulent flow has 

been observed within strong shear regions in the vicinity of jets. 

2.3.2 Thunderstorm potential indices 

In the springtime case, indices were developed that combined kinematic 

and thermodynamic quantities. The same indices, previously described by 

Eqs. 2-2 through 2-6, were used in AVE III to test their applicability to 

a wintertime situation. 

The results from AVE IV indicated that the inclusion of both upper- 

and lower-level effects in an index accurately depicted areas of thunderstorm 

development. Large negative values correlated well with areas of intense 

thunderstorms. In AVE III the only intense thunderstorms were over the 

eastern Gulf of Mexico and Florida, The only large negative values of any 

one of the indices was in the southeast, in fairly good agreement with observed 

thunderstorms. The large areas of snow in the midwest and northeast were 

not clearly associated with negative values except for an area of strong 

snow showers in western Pennsylvania. Examples of all the indices are shown 

in Fig. 2-11 for 0000 GMT 6 February. The large areas of small values 

associated with the high pressure area over the Plains States reveals a 

problem in attempting to use this index in winter. This area has strong low- 

level divergence, negative vorticity advection, and very stable air; but 

by multiplying the index with the average mixing ratio, which is very small, 

relatively small values of the final index are observed. However, in general, 

it appears that the indices still perform well enough to depict synoptic-scale 

areas favorable for intense (MDIQ4) convection. 
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Fig. 2-11. (Continued). 
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(e) TPI 2 

Fig. 2-11. (Continued). 

2.3.3 Apparent relationship of residual to the jet stream - --- 
In AVE IV, the average profiles of the residual term indicated a 

systematic imbalance among the computed terms in the vorticity equation in 

areas of intense convection. While the residual on the average was also 

systematic in AVE III, a more interesting result is observed in the analyzed 

fields. Figure 2-12 shows the 300~mb values of the residual at 0000 and 0600 

GMT on 6 'February 1975, with the jet stream at 300 mb superimposed. At 

both times there is a distinct pattern of maximum and minimum values for the 

residual along the core of the jet stream. The source of the pattern is not 
clear, as three different conditions were present, In some cases, large 
magnitudes of advection were not balanced by either a large divergence term 

or large local change terms. At other places, a large magnitude of the 

divergence term was not balanced by local change or advection. Thirdly, both 
advection and divergence in some cases were of equal value but opposite in sign. 

It is also hard to determine exactly how much of this is an effect of 

measurement error. In the previous case study, an error analysis revealed 

that at low elevation angles (high wind speed) , errors of over 100% in computed 

terms of the vorticity equation could be expected. However, this residual 
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(b) 0600 GMT 6 FebrUary 1975. 

Fig. 2-12. The residual term at 300 mb (10 -9 sm2) at (a) 0000 GMT 
and (b) 0600 GMT 6 February 1975 (see Appendix for 
MDR data). 
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pattern appears wave-like (on the order of 1000 km wavelengths), and resolu- 

tion should be adequate, considering the input data, to partially define 

real atmospheric.systems. 

There are good arguments for expecting these large residuals along 

the jet stream to represent real effects. Many studies of clear air 

lturbulence have shown that areas of turbulence occur along the jet streams, 

and satellite pictures clearly show that subsynoptic-scale wave phenomena 

are present along jet streams. The non-balance between synoptic scale 

advective and divergence effects in the vorticity equation may indicate areas 

favorable for subsynoptic wave development while the time continuity of 

these patterns lends support to the physical reality of the imbalance. 

2.4 Conclusions 

The following conclusions were reached based upon findings from the 

AVE III case study: 

1. When compared to the AVE IV case, stability was a much better 

indicator of intense convection during the wintertime. In AVE IV large areas 

of unstable air had no convection. 

2. Average profiles of the vorticity budget for AVE III indicate the 

kinematics of spring and winter convection are essentially the same. 

3. The thunderstorm potential indices, although designed for spring- 

time convection, worked well for the AVE III case. However, the use of mixing 

ratio to scale down dry areas causes too small values for non-convective 

areas. 

4. Large imbalance (residuals) in the vorticity budget show systematic, 

wavelike patterns along the jet stream that are possibly related to sub-grid 

scale systems. 
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THE MOISTUFUZ BUDGET IN AVE III 

mbert W. Scott* 
Department of Meteorology 

Texas A&M University 
College Station, Texas 77843 

ABSTRACT 

The moisture budget was evaluated for AVE III (a wintertime case) as 

was done previously for AVE IV (a springtime case). The results for AVE III 

compare closely with those for AVE IV in convective areas. In nonconvective 

areas in both experiments the termswere generally small in magnitude so 

that comparisons were difficult to make. Results from AVE III show that 

large amounts of moisture accumulated in convective areas through horizontal 

moisture divergence and that much of this moisture was transported vertically; 

a large negative residual was found in convective areas which was balanced by 

precipitation in these areas; and the accumulation of moisture occurred 

3 hours in advance of cumulus development. 

*Presently employed by Illinois State Water Survey, Urbana, Illinois. 
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CHAPTER 3. THE MOISTURE BUDGET IN AVE III 

3.1 Introduction 

An evaluation of the moisture budget in regions of thunderstorm 

activity occurring during the AVE IV experiment was performed by Scott and 

Scoggins (1977). The primary method of moisture accumulation during the 

experiment was through horizontal and vertical moisture divergence in the 

areas of convective storms. The purpose of this report is to investigate 

the moisture budget of the third AVE experiment using the methods developed 

for AVE IV. Comparisons of results and conclusions will be made in order to 

investigate similarities and differences in the two experiments. 

3.2 Analytical Methods 

3.2.1 The moisture budget equations 

The moisture budget equation for the atmosphere has been derived by 

several authors (Spar, 1953; Palmen and Newton, 1969; Haltiner, 1971). A 

combination of the methods of Haltiner and Palmen and Newton is reproduced 

here. 

Haltiner began with the continuity equation for water vapor in the 

atmosphere which is given as 

apv+ at 6 (pv& = s, (3-l) 

where p v is the density of water vapor in the air and ? and G are the three- 

dimensional de1 operator and velocity in pressure coordinates. The term S 

represents sources or sinks of moisture in mass per unit volume per unit time. 

The density of water vapor is defined as p, G pq, where p and q are 

the density and specific humidity of the air, respectively. If this definition 

is exchanged with p, in Eq. (3-l) and an expansion is made of the resulting 

terms, one has 

q at + p at + pq$-; + p34q + q&?p = s. ap 3 (X-21 

dP By assuming an incompressible fluid (i.e., dt = 0), Eq. (3-2) can 

be written 

aq p at+ pi-& = s. (3-3) 
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The remainder of the derivation follows that by Palmen and Newton in 

a slightly expanded form. By integrating Eq. (3-3) over a vertical column, 

assuming hydrostatic equilibrium, one has 

Pl Pl Pl 
1 a hf.4 
G J gdp+$ J q2- (q?2)dp + $ ap J dp = R, (3-4) 

p2 p2 p2 
where the second term on the left-hand side (LHS) has been expanded into 

its horizontal and vertical components. The right-hand side (RHS) of Eq. (3-4), 

R, results from the integration of S and represents the effects of evaporation, 

precipitation, and condensation. 

Integration of the third term on the LHS of Eq. (3-4) gives 

p1 Pl 
1 
4 J $dp+$ J $,.(qG2)dp + $ [MJ.Opl - (qu)p21 = R. 

p2 p2 

(3-5) 

which is the moisture budget equation for a unit column over each grid 

point. Equation (3-5) was integrated over an area, A, of three grid distances 

square. Previous researchers had used a similar procedure except that 

averages were taken over much larger regions , enclosing entire cyclones and 

their associated weather. Since convective systems are subsynoptic-scale 

phenomena, a smaller area was chosen in order to show the moisture budget in 

the region immediately surrounding storms. Upon integration, Eq. (3-5) becomes 

Pl 

1 +- gA J 1 (SW) 
Pl 

-(qw) ldA=$ 
p2 J RdA, (3-6) 

A A 

where each term was divided by A, resulting in g cm 
-2 -1 s as the final 

units. 

The terms on the LHS of Eq. (3-6) are the local rate-of-change of 

moisture, the horizontal moisture divergence, and the net vertical boundary 

flux of moisture, respectively. By application of the divergence theorem, 

Eq. (3-6) becomes 
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p1 p1 
1 
gA II $dpdA+& sVndpa 

Ap2 Lp2 

1 +- gA J 1 (SW) 
p1 

- (W) 
p2 

Ia = + RdA, (3-7) J 
A. A 

where V n is defined by convention as positive outward and L is the length 

of the boundary around area A. Equation (3-7) is the final form of the 

moisture budget equation used in this research. For convenience, q is replaced 

in Eq. (3-7) by the mixing ratio which introduces only a small error. 

3.2.2 Local changes 

The local rate-of-change of moisture is represented by the first term 

on the LHS of Eq. (3-7). The evaluation of 2 was performed at each grid 

point and level by use of centered finite differences using values of mixing 

ratio at times immediately adjacent to the one being considered. This 

operation was performed at each time except for the first and last time 

periods of the experiment when a forward difference and backward difference 

scheme was used, respectively. 

The values found at each grid point were integrated with respect to 

pressure over an interval of 50 mb, utilizing a first order integration approxi- 

mation. The method used was the trapezoidal rule which has the form (fl+f2)$ 
2i where the f's represent the values of at at the adjacent pressure levels and 

h= 50mb. For two values, this amounts to simple averaging. This process 

was continued for each layer and resulted in pressure-integrated values of the 

local change of moisture for 50-mb layers from 900-350 mb. 

As stated previously, the area integral was evaluated over an area of 

three grid distances square, centered at each grid point. This was done by 

s&ing the eight adjacent grid point values with the point they surrounded. 

This value was multiplied by one grid distance squared, d2, which was the 

area over which the value at each grid point was assumed to be representative. 
2 The resultant amount was divided by the total area, A = (3d) , of the nine 

points and placed at the central grid point. Division by gravity completed 

the evaluation of the term. 

3.2.3 Vertical changes 

The product of mixing ratio and vertical motion at each grid point was 

calculated for every 50-mb level. The net vertical boundary flux of moisture 

was found by subtracting the upper-level value from that of the next level 

below. The nine-point area-averaging routine that was described in the previous 
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section was utilized here. Division by A and gravity completed the evaluation 

of this term. 

3.2.4 Horizontal changes 

The initial step in evaluating the net horizontal boundary flux of 

moisture was to compute fields of q times the u component of velocity, and q 

times the v component of velocity at each grid point and level. Each of these 

fields was integrated separately with respect to pressure by the method 

described in the section concerning local changes. Using these pressure- 

integrated fields, the horizonta$ boundary flux into the area over which the 

local and vertical changes had been averaged was computed. This area is 

represented by the solid line in the schematic diagram below. Each side of 

the area was segmented (as shown by the dashed lines) and the flux was calculated 

*I .I’ . 
.I.‘. . - - - - 

El 
. . . . . - - - - 

.“I’ . 
. .I#.I. . 

individually across each segment. This was done by averaging the two points 

on opposite sides of each segment. Each average was multiplied by the length 

of the segment, d, along which it was assumed constant. Care was taken in 

the averaging process to insure that the pressure-integrated values containing 

the east-west velocity component and those containing the north-south velocity 

component were used on their respective sides of the area boundary. 

Since the net horizontal boundary flux of moisture was defined by 

convention as positive outward, the signs of the averaged values on the west 

and south sides were taken into consideration. The averages were then summed 

and the resultant placed at the central grid point. Evaluation of the term 

was completed by dividing this final value by A and gravity. 

As stated previously, by use of the divergence theorem the net horizontal 

boundary flux can be replaced by the moisture divergence. This quantity 

can be expanded into two separate components, the moisture concentration due 

to velocity divergence of the wind, (q?=&, and horizontal moisture advection, 

cGq>. Calculations of these two terms were made for purposes of comparison 

with the evaluation of the net horizontal boundary flux. 
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The initial step in the evaluation of q 3' WV was to calculate a field 

of divergence, using centered finite differences at every grid point. These 

values were multiplied by the value of q at that point. The rest of the 

evaluation followed the pressure and area integration method described in 

the section concerning local changes. Division by gravity and A completed 

the calculation. 

Moisture advection was evaluated by first computing values of the 

components of $q, using centered finite differences at each grid point. 
aq Values of ux as and v were summed for each grid point. 

ay 
Integrations with 

respect to pressure and area were performed as was described previously. 

Division by gravity and A completed the evaluation. 

3.2.5 Combination of terms (residual) -- 
Three-hour composites of hourly precipitation data were tabulated and 

plotted and analyzed manually. Values were assigned to each grid point 

according to the analysis. Integration with respect to area and division 

by A, discussed in previous sections , completed the evaluation. 

3.3 Results 

3.3.1 AW III -- 
The manner of presentation of maps and graphs shown in this report 

follows that used by Scott and Scoggins (1977). They related selected computed 

quantities of the moisture equation to MDR values at the time of convection 

and 3 h prior to convection in order to observe the relationships between the 

quantities and MDR values in convective and nonconvective areas. It should 

be pointed out that very little convection occurred over land during AVE III 

so that relationships obtained during this experiment must be considered 

tentative. Therefore, comparisons with the results from AVE IV can only be 

very general in nature. Due to extremely dry air in the upper atmosphere in 

AVE III, calculations were made from 900-450 mb as compared to a 900-350 mb 

layer used in AVE IV. 

The horizontal analyses presented in the following section are at 

1800 GMT on 6 February 1975, which is centered in the period of convective 

activity in the Gulf of Mexico. Figure (3-l) shows the surface and 700 mb 

features that were present at that time. Radar-observed precipitation, 

indicated by a 3-h composite of MDR values, is shown in Fig. (3-2) (see 

Appendix for all AVE III MDR charts). 
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Fig. 3-l. Synoptic charts for 1800 GMT, 6 February 1975. 
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Fig. 3-2. Three-hour composite of MDR data at 
1800 GMT on 6 February 1975. 



3.3.1.1 Local changes 

Vertical profiles of the local rate-of-change of moisture related to MDR 

data are shown in Fig. (3-31. In the areas of precipitation (MDR 21, 

moisture was lost locally in the lower 100 mb. The maximum loss was found in 

the lowest layer evaluated (900-850 mb). Above 800 mb, there was a gain of 

moisture locally, reaching a maximum in the 50-mb layer centered on 725 mb. 
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Fig. 3-3. Vertical profiles of the local rate-of-change of moisture 
(lO+g crnD2 s-l ) as function of MDR values. 

The profile of the nonconvective precipitation areas was markedly 

different from those just discussed. In these areas, local drying was 

calculated in all layers in the troposphere. 

Comparisons made between this term and MDR data lagged by three 

hours (figure not shown) showed little change in the profiles of the non- 

convective regions of precipitation. However, in the areas of heavier rain- 

fall, all profiles were shifted in the positive direction indicating that 

most of the troposphere was becoming more moist three hours prior to thunder- 

storm formation. 

3.3.1.2 Vertical moisture divergence 

Vertical profiles of the vertical moisture divergence appear in 

Fig. (3-4). The convective rainfall areas were characterized by strong 
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vertical divergence below 700 mb and equally strong convergence above. 

Since, in this situation, upward vertical motion usually increased throughout 

the layer below 700 mb, it would be expected that each 50-mb layer below 

700 mb would be losing moisture to the next one above (assuming constant 

moisture through the layer). This loss of moisture would be registered 

as a gain higher up in the atmosphere as vertical motion decreased above the 

level of nondivergence. 
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Vertical moisture divergence 

Fig. 3-4. Vertical profiles of vertical moisture divergence (10 -6 -2 g cm s-l) 
as function of MDR values. 

The profile for the nonconvective areas show values near zero through- 

out the atmosphere. This result was expected since any large vertical con- 

vergence or divergence in any layer would indicate the presence of strong 

vertical motion likely associated with much heavier rainfall or subsidence 

in storm areas. 

Spatial fields of the vertical moisture divergence in the 900-to-750- 

mb, and 750-to-500-mb layers at 1800 GMT appear in Fig. (3-5). In comparison 

with Fig. (3-2), it is easily seen that this term was large only in the areas 

near the higher MDR values and weak in the nonconvective areas. This supports 

what was found in the profiles of Fig. (3-4). 

In making comparisons between this term and MDR data lagged by three 

hours (figure not shown), it was found that the nonconvective profiles were 

essentially unchanged. The regions of heavier precipitation also showed the 
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(a) 900 - 750 mb 

(b) 750 - 500 mb 

Fig. 3-5. Analyses of vertical moisture divergence at 1800 
GMT on 6 February 1975 (low6 g c-mm2 s-l) Within 
two layers. 
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same general pattern, but values were less than the "no lag" case, especially 

in the areas of the strongest storms (MDe8). This indicates that strong 

vertical moisture divergence occurred in the areas where heavy rain fell 

three hours later, but the largest values were found at the time of the 

storms. It also suggests that the term could be used to indicate the positions 

of future development or continued maintenance of storms. 

3.3.1.3 Horizontal moisture divergence 

Vertical profiles of horizontal moisture divergence as function of MDR 

values appear in Fig. (3-6). Strong horizontal convergence of moisture 

occurred in association with the heavier precipitation areas below 650 mb. 

Maximum convergence occurred in the 50-mb layer from 800 to 750 mb. Positive 

moisture divergence was present above 600 mb. The nonconvective areas were 

characterized by small divergence below 700 mb with no contribution from this 

term above this level. 
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Horizontal moisture divergence 
Fig. 3-6. Vertical profiles of horizontal moisture divergence (10 -6 -2 g cm s-l) 

as function of MDR values. 

By splitting the horizontal moisture divergence into its two components, 

it can be seen from their vertical profiles that both moisture concentration 

due to wind divergence (Fig. 3-7) and moisture advection (Fig. 3-81 contri- 

buted heavily to the large concentration of moisture in the lower atmosphere. 
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Fig. 3-7. Vertical profiles of moisture concentration due to 
wind divergence (low6 g cmm2 s-l) as function of 
MDR values. 
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Fig. 3-8. Vertical profiles of moisture advection (10 -6 -2 g cm s-l) 
as function of MDR values. 
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~0th components were strongest in the 800-to-750-mb layer which accounts for 

the large amount of convergence at that level shown in Fig. (3-6). 

Horizontal moisture divergence in the lower levels of the nonconvective 

areas was caused by moisture advection. Since only small velocity divergence 

(positive or negative) would be expected in these areas, any horizontal 

accumulation of moisture could only come from advection. 

Analyses of the horizontal moisture divergence in the layers from 

900-750 mb and 750-500 mb at 1800 GMT on 6 February 1975 are shown in Fig. 

(3-9). Referring to Fig. (3-2), it is seen that only the regions where 

MDQ~ were associated with strong moisture divergence. 

Values of this term were much larger in the heavier rainfall areas 

when the MDR data were lagged by three hours. This indicates that horizontal 

moisture divergence was stronger just ahead of the storm areas which, like 

vertical moisture divergence , gives an indication of the position for future 

development or continued maintenance of storms. 

3.3.1.4 Residual of moisture - 
Vertical profiles of the residual of moisture during the AVE III 

experiment are shown in Fig. (3-10). All areas showed a net loss of moisture 

from the environment throughout the atmosphere. This means that condensation 

and precipitation were greater than evaporation of clouds during the AVE III 

experiment. The difference was larger in the heavy rainfall areas. Very 

small losses were found in the nonconvective areas. 

The analysis of the residual of moisture in the layer from 900-450 mb 

at 1800 GMT on 6 February 1975, appears in Fig. (3-11). Large values of 

negative residual were found in the areas of the heaviest rainfall (see 

Fig. (3-2)). The values were much larger than those found in the nonconvective 

precipitation areas as shown in Fig. (3-lo), 

Comparison of the residual of moisture and MDR data lagged by three 

hours (figure not shown) showed a closer balance of the terms in the moisture 

budget. As stated earlier, areas of MDW2 experienced decreases in the local 

rate-of-change of moisture term between the 3-h lag and zero lag so that 

the larger local rate-of-change term at a 3-h lag resulted in a smaller 

residual. 

In an attempt to account for a portion of the large residual, precipita- 

tion analyses were made from hourly precipitation data collected via 

recording raingages. The analysis for 1800 GMT on 6 February is shown in 
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(a) 900 - 750 mb 

(b) 750 - 500 mb 

Fig. 3-9. Analyses of horizontal moisture divergence at 1800 GMT 
on 6 February 1975 (10e6 g cmw2 s-l). 

51 



425 
t 

- ALL POINTS 

475 

525 

575 

625 

675 

725 

775 

825 

875 

t 
-m-e- NONCONVECTIVE 

- . . . . ..MDR 4-g 

- - -MDR 8-9 

-4 -3 -2 -I 0 

Residual of moisture 

Fig. 3-10. Vertical profiles of the residual of moisture 
(lo-6 g cm-2 s-l) as function of MDR values. 

Fig. (3-12). The heavy rainfall area over Florida coincides well with the 

region of large negative residual in the same area shown in Fig. (3-11). 

It must be pointed out that large rainfall occurred in the Gulf of Mexico 

in association with the strong convection and was not measured. Thus, the 

precipitation analysis is not complete in that area. The data collection 

was very good in the nonconvective regions but the amounts were very light. 

The residual was also small in these areas , comparing favorably to the 

precipitation analysis. 

3.3.2 Comparisons between AVE III and AVE IV ----- 
The discussion in this section relates the results of this report on 

AVE III with those concerning AVE IV performed by Scott and Scoggins (1977). 

Comparisons between AVE III and AVE IV are difficult to make since the 

two experiments represent entirely different synoptic systems. AVE III was 

characterized, for the most part, by light rain and snow over much of the 

northern United States with a small area of convection across the northern 

Gulf of Mexico. Conversely, two strong lines of convective storms were in 

existence during the AVE IV experiment. Since the data coverage in the heavy 

rainfall areas of AVE III is poorer than in AVE IV, comparisons are made 

relative only to the general patterns present and not to actual computed 

values of the various terms, 
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Fig. 3-11. Analysis of the residual of moisture in the la 
-ii 

er from 
900-450 mb at 1800 GMT on 6 February 1975 (10 g CmB2 s-l). 
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Fig. 3-12. Three-hour composite of precipitation flux at 1800 GMT 
on 6 February 1975 obtained from rainfall rates 
(10'6 g cm-2 s-11. 
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The most noticeable'similarity between the two experiments was in the 

convective rainfall areas. The vertical moisture divergence (called .the net 

vertical boundary flux of moisture in AVE IV) indicated divergence in the 

lower layers and convergence aloft in both experiments. The horizontal 

moisture divergence (termed the net horizontal boundary flux of moisture in 

AVE IV) showed strong convergence through a deep layer near the surface and 

small divergence higher up during AVE III and AVE IV. Thus, strong horizontal 

convergence of moisture occurred at the surface where it was transported 

vertically upward and then accumulated in the middle layers of the convective 

regions during both experiments. 

The two separate components of the horizontal moisture divergence 

shows the moisture concentration due to wind divergence to be very nearly the 

same in both experiments. Large negative values were found in a deep lower 

layer with small positive values aloft. Moisture advection, however, was 

strikingly different in each experiment, In the convective region of AVE III, 

the horizontal moisture advection term was strongly negative in the middle 

layers (positive moisture advection). Contrary to this, data collected during 

AVE IV indicated positive moisture advection in the same layers. This can 

be partially explained by the differences in the moisture content of the 

regions surrounding the convective storms, Winds at 700 mb blowing into the 

thunderstorm areas during AVJZ IV were from the west and southwest and, for 

the most part, were relatively dry. Convection in AVE III, on the other hand, 

was located in the Gulf of Mexico. Thus, the air being advected into the 

system had a higher moisture content, particularly in the middle troposphere. 

The local rate-of-change of moisture was also different in both experi- 

ments. Whereas in AVE IV the term was negative in lower layers and negligible 

above, the local rate-of-change of moisture was negative near the surface but 

positive in a deep layer aloft during AVE III. The different moisture 

advection distributions previously described were primarily responsible for 

explaining the differences in the local rate-of-change profiles. 

The pattern of the residual of moisture was also very similar during 

both experiments. Large negative values of the term were present throughout 

most of the atmosphere. Precipitation analyses were able to account for a 

large portion of the residual in both AVIS. 

Contrary to all of the above similarities, results for the nonconvective 

areas were seldom the same when comparing the two experiments. The magnitude 

of the terms in these areas were generally very small and the signs were 
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often different between AVE III and AVE IV and followed no noticeable 

pattern. Since the convective regions were so strikingly similar and the non- 

convective areas were not, it is possible that the moisture budget method 

that was used in evaluating AVE III and AVE IV is applicable only in 

convective or heavy rainfall areas. Regions of light or no precipitation 

accumulate too little moisture to obtain results which are not affected 

strongly by possible errors in the data or computations. 

3.4 Conclusions 

1. Large amounts of moisture were accumulated in the convective 

areas of AVE III, as shown by horizontal moisture divergence. This was 

accomplished through both horizontal wind divergence and moisture advection. 

Much of this moisture was then transported vertically as indicated by strong 

vertical moisture divergence, 

2. Although an increase in moisture content was found locally in 

the convective areas, a large negative residual remained, This was balanced, 

in part, by precipitation that fell during the experiment measured by hourly 

precipitation totals. 

3. Comparisons made between computed moisture quantities and MDR 

values lagged by three hours revealed larger values in the preconvective areas 

in all terms, This indicated the position of future development or continued 

maintenance of storms, 

4. Results from AVE III and AVE IV closely compare in the convective 

areas of both experiments. Terms in the nonconvective areas were so small 

in both experiments that only systems which transport large amounts of 

moisture can be evaluated accurately using the moisture budget analysis 

presented here, 
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ABSTRACT 

An energy budget and transformation study was conducted for AVE III 

(a wintertime case) as was done previously for AVE IV (a springtime case). 

The same computational procedures were employed,and although..the synoptic 

conditions and extent of convective activity were different, similar results 

were found in both experiments. 

Intense energy conversion and transport processes occurred during the 

AVE III period. The generation of energy by cross-contour flow was large. 

Much of this generated energy was transported horizontally out of the area, 

while smaller amounts were transferred to subgrid scales and even smaller 

amounts used to increase the kinetic energy of the volume. Horizontal and 

vertical transports were the largest components of the energy budget, while 

diabatic heating effects were small. Rather large changes in the energy 

budget occurred during the AVE III period. These changes occurred in all 

budget terms. 

*Assistant Professor of Meteorology, St. Louis University, St. Louis, MO 
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CBAPTER4. ATMOSPHERIC ENERGETICS DURING THE AVE III EXPERIMENT 

4.1 Introduction 

Understanding atmospheric energetics of all scales of motion is 

important since energy conversion and transport are associated with weather 

phenomena of all scales. Interaction between the various scales of motion 

is an especially important consideration. The kinetic energy balance of 

middle-latitude cyclones has been described in several recent articles (e.g., 

Chen and Bosart, 1977; Smith, 1973a and b; Vincent and Chang, 1975; Ward and 

Smith, 1976; Petterssen and Smebye, 1971). Kung and Baker (1975) described 

the kinetic energy budgets of eleven categories of midlatitude flow by computing 

budgets twice daily over a five-year period; These and other studies have 

shown that cyclones are centers of major energy conversion and transport. 

The energetics of anticyclones is considerably different from that of cyclones 

and much less intense. The environment of intense convection also is charac- 

terized by major energy activity that is related to the life cycle and intensity 

of the storms (Fuelberg, 1977; Fuelberg and Scoggins, 1978). 

Energy processes associated with many types of synoptic conditions have 

not been described in detail. In addition, most previous studies have relied 

on rawinsonde data at the standard 12-h intervals. This study describes 

budgets of kinetic, internal, and potential energy during a 36-h period when 

a pronounced upper-level trough, not associated with a deep surface cyclone, 

traversed the eastern United States. Rawinsonde data at 3- and 6-h intervals 

permit the temporal resolution of many features that ordinarily cannot be 

described. 

4.2 Energy Equations 

The energy equations used in this study have been described by Fuelberg 

(1977) and West (1973). 

The kinetic energy equation is 

(a) 
1 am -- 
cl JJ T 

dpdA" + $ JJ G-i? dp," (4-l) 
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where k = l/2(u2 + v2) is horizontal kinetic energy per unit mass, 

K =$ kdpdA", J\ + AP 
V is the horizontal wind vector, 

$I = gz is geopotential height, 

p is pressure, 

g is acceleration due to gravity, 

A" is a dummy variable of integration corresponding to area, 
dp 

w = dt - is vertical motion in isobaric coordinates, and 
+ 
F is frictional force. 

Local changes in kinetic energy for a fixed volume, term (4-la), are 

due to four processes., Term (4-lb) represents kinetic energy generation 

(Kung, 1966) or conversion of potential to kinetic energy (Smith, 1970) due 

to cross-contour flow. Terms (4-1~) and (4-ld) are horizontal and vertical 

flux divergence of kinetic energy that represent interaction of the limited 

volume with the surrounding atmosphere, Term (4-le) conceptually represents 

primarily frictional processes, but when computed as a residual in (4-11, 

also represents a transfer of energy between grid and subgrid scales of 

motion due mostly to unresolvable eddy processes (Smith and Adhikary, 1974; 

Kung and Smith, 1974). This term is often called the dissipation term 

and is denoted by D. 

The sum of internal and gravitational potential energy is given by 

1 
4 JJ &(cVT)dpdA" + $ II g cl,,” = 1 

g JJ $ dp,” + 1. 4 II ;.$$ l dp,” 

AP (a) Ap Ap (b) Apk) 

-ii JJ ?.(cv&)dpdA" + + JJ $&dpdA1l] 

AP 

- 1; JJ s(cvTU)dpdA" + ; II F dpdA"] 

AP (e) Ap 

-- 9" JJ $3= G3 dpdA", 

AP (f) 

where c 
V 

is specific heat, 

T is temperature, 

g is diabatic heating per unit mass, and 

R is the gas constant. 
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Local changes of internal and potential energy, term (4-2a), are due 

to five component processes. Term (4-2b) represents generation of internal 

energy due to diabatic effects, Term (4-2~) is identical to (4-lb) but with 

opposite sign and represents conversion between available potential and 

kinetic energy. Terms (4-2d) and (4-2e) are horizontal and vertical flux 

divergence of internal and potential energy. Term (4-2f) defines pressure 

work at the boundary of the limited volume under consideration. 

4.3 Analytical Procedures 

Computational procedures used in this study are similar to those of 

Fuelberg (1977). Surface and rawinsonde data were interpolated from the 

randomly spaced stations on to a grid with a spacing of 158 lun. An objective 

analysis scheme developed by Barnes (1964) was used for the interpolation, 

Interpolated fields were smoothed using a mild filter developed by Shuman 

(1957). Terms in (4-l) and (4-2) were computed on grid points at the 

surface and at 50-mb intervals from 900 to 100 mb. Values were then integrated 

over lOO-mb layers. Kinematic values of vertical motion were used. Terrain- 

induced vertical motion was included, and the values were adjusted to those 

obtained from the adiabatic method at 100 mb by using a technique presented 

by O'Brien (1970). Diabatic heating, appearing in term (4-2b), was computed 

from the thermodynamic equation 

dH E+c 
-= Cpat dt f.8 T + 

P 
(c =- a)w 

Pap I (4-3) 

where c 
P 

is specific heat and ~1 is specific volume. 

4.4 Results 

4.4.1 Composite kinetic energy budget_ 

The average energy budget for the entire AVE III experiment describes 

energetics of the large-scale flow. The kinetic energy budget averaged 

for all nine observation times is given in Table 4,1, Since the upper-level 

trough axis remained west of the center of the area for more than half of the 

observation times, the budget presented here generally describes conditions 

east of the trough line, A striking feature is large generation of kinetic 

energy due to cross-contour flow; -2 the vertical total is 70,5 W m . Largest 

generation occurs near the level of the jet stream while a secondary maximum 

occurs near the surface. A relative minimum is located in the 900- to 700-mb 
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layer. Much of the generated energy is transported out of the AVE area by 

horizontal flux divergence. This process also is a maximum near jet-stream 

level. 

Negative dissipation, that is transfer of kinetic energy from grid to 

subgrid scales of motion, is an additional, but secondary, sink of the 

generated energy. The vertical profile of dissipation roughly parallels that 

of the generation term. 

Table 4.1. Average kinetic energy bud et for the entire AVE III experiment. 
The AVE area is 49.0 x 10 '!n2. All nine observation times are 
included. 

Pressure Layer K 

lo55 mm2 W m -2 w m-2 w m-2 w m-2 -2 Wm 

200-100 9.3 0.4 13.0 -0.9 19.3 -6.8 

300-200 10.5 1.1 12.6 -0.3 20.1 -6.7 

400-300 8.5 1.4 8.2 -0.5 12.6 -3.5 

500-400 5.9 0.9 5.3 0.0 7.0 -0.8 

600-500 3.9 0.8 2.4 0.4 4.0 -0.4 

700-600 2.5. 0.3 0.4 0.7 2.2 -0.8 

800-700 1.5 0.0 0.2 0.3 1.4 -0.9 

900-800 0.8 0.1 0.5 -0.1 1.4 -0.9 

sfc-900 0.3 0.c 0.2 -0.1 2.5 -2.4 

Vertical total. 43.2 5.0 42.8 -0.5 70.5 -23.2 

Vertical transport of kinetic energy is relatively small during the 

AVE III experiment. Vertical flux convergence is evident above 400 mb 

and below 800 mb with flux divergence occurring in the middle troposphere. 

Very little of the generated energy is used to increase the kinetic 

energy content of the volume because most is transported out of the area 
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or dissipated into smaller scales of motion. The vertical total of term 
aK at is 5.0 W m -2 which is only 7.1% as large as -GV$ . 

Random errors in input data and truncation error lead to errors in 

computed terms of the kinetic energy equation, but such errors are not 

thought to affect the trends of results or their interpretation in most 

situations (Vincent and Chang, 1975; Komegay and Vincent, 1976; Ward and' 

Smith, 1976). Since wind speeds associated with the jet stream were very 

high during AVE III, computed winds were derived from sonde elevation angles 

that were low. The accuracy of such winds is less than when sondes remain 

high on the horizon (Fuelberg, 1974), TO minimize this problem, horizontal Y. 
and vertical smoothing described in the procedures section of this report 

were used. These error reduction procedures appear successful since spatial 

fields of energy terms show reasonable continuity with synoptic map features. 

A comparison of the average kinetic energy budget for the AVE III 

experiment with Eulerian budgets of previous investigators reveals some features 

that are similar to budgets obtained for the different synoptic conditions 

but many features that are dissimilar (Table 4.2). Average kinetic energy 

during the AVE III period is much greater than reported for previous studies. 

As stated earlier, wind speeds as large as 90 m s -1 
were observed. 

An especially interesting feature is large generation of kinetic 

energy. The value of 70.5 W m -2 is much greater than has been reported pre- 

viously for short waves with west-east extent of about 2000 km (Ward and Smith, 

1976),and for the vicinity of mature cyclones associated with intermediate 

waves (Kung and Smith, 1974). It is noteworthy that such large generation 

of kinetic energy is observed during the AVE III experiment even though a 

vigorous surface cyclone is not present in the vicinity. Slight cross-contour 

flow can produce large generation in the present study because wind speed 

and height gradients are both very large, Chen and Bosart (1977) reported 

a value of 64.6 W m -2 in the vicinity of a mature cyclone using a quasi- 

Lagrangian budget approach, but no values of K were given for comparison. 

Large generation of kinetic energy also occurred in the vicinity of a mature 

squall line (Fuelberg, 1977; Fuelberg and Scoggins, 1978). Although wind 

speeds for the squall line case were much smaller than observed during the 

AVE III experiment, cross-contour flow on synoptic maps was much more noticeable 

during the squall line of the AVE IV experiment than during AVE III. The 
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Table 4.2. The average AVE III kinetic energy budget compared with previous results. 

Author Data -Y= K aK $.k;; awk 
at ap 

-6$4 D 

105J m -2 w m-2 w m-2 -2 Wm w m-2 w m-2 

Fuelberg (1977) Entire AVE IV experi- Sfc-100 mb 19.8 -4.0 1.6 

Kung and Smith 
(1974) 

E 

Kung and Baker 
(1975) 

Ward and Smith Short wave development Sfc-100 mb 
(1976) area is 134.0 x 1011 m2 

Present Study AVE III, area is 
49.0 x loll m2 

Sfc-100 mb 

Squall line at peak 
i.;.;n;ityyla;a is 

Sfc-100 mb 

Average mature cyclone Sfc-tropopause 
vicinity, area is 
7.5 x loll m2 

Open cyclonic waves at Sfc-100 mb 
500 mh with a cyclone at 
the surface (283 synop- 
tic cases), area is 
71.5 x 10~l m2 

Open cyclonic wave at Sfc-100 mb 
500 mb, not cyclonic at 
surface (344 syno tic cases) 
area is 71.5 x 10fll m2 

25.5 

-- 

15.9 

16.4 

19.6 

43.2 

-6.1 

14.0 

0.5 

0.7 

0.5 

5.0 

43.9 

-24.4 

3.3 

4.9 

-5.2 

42.8 

-0.1 

-0.1 

0.5 

0.0 

0.0 

0.0 

-0.5 

-4.0 

52.2 

27.4 

1.5 

-14.5 

-37.3 

9.4 -5.7 

7.2 -1.6 

-4.4 

70.5 

-0.3 

-23.2 



budgets for open cyclonic waves presented by Kung and Baker (1975) are an 

average of several hundred synoptic cases so that details of individual 

intense storms are not presented. . . 
Large horizontal flux divergence of kinetic energy distinguishes the 

AVE III situation from previously computed budgets of short waves (Ward and 

Smith, 1976) as well as in the vicinity of a mature surface cyclone 

associated with an intermediate wave (Kung and Smith, 1974) where flux 

convergence has been indicated. Horizontal flux divergence is associated with 

the average open cyclone at 500 mb (Kung and Baker, 19751, but values are 

small, probably because of the averaging procedure. Similarity with the 

AVE IV squall line case (Fuelberg, 1977; Fuelberg and Scoggins, 1978) is 

again noted; 60% of the generated energy is exported during AVE III while 

84% is exported in the vicinity of the squall line. 

Dissipation of kinetic energy to subgrid scales of motion consumes 

about 33% of the generated energy in the present study. This value is similar 

to that of an intense squall line (Fuelberg, 1977) and to that of open 

cyclonic waves (Kung and Baker, 19751, but quite different from that observed 

near a mature cyclone (Kung and Smith, 1974) where more kinetic energy was 

dissipated than was generated. Dissipation played a minor role in the 

kinetic energy budget for short waves (Ward and Smith, 1976). 
aK Positive values of at are found during the AVE III period and in pre- 

vious studies involving upper-level troughs and surface cyclones. However, 

negative values were associated with the squall line case. Vertical flux 

of kinetic energy in the entire vertical column of the atmosphere is a small 

component of the overall budget for all studies shown in Table 4.2. 

4.4.2 Composite internal and potential energy budget 

Transport of internal and potential energy , rather than generation by 

diabatic effects or cross-contour flow, is the major energy process during the 

AVE III experiment (Table 4.3). Generation of internal energy by diabatic 

effects and conversion of available potential energy to kinetic energy by 

cross-contour flow are at least an order of magnitude smaller than the 

horizontal boundary term. Horizontal flux divergence of internal and poten- 

tial energy occurs below 800 mb while flux convergence occurs at higher 

levels. Vertical flux convergence occurs near the surface and above 200 mb, 

but flux divergence is seen in most intervening layers. The boundary work 

term is much smaller than the two flux divergence terms. A local decrease 

of internal and potential energy is the net result of the five component 

processes just described. 
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A residual was computed to balance the equation of internal and 

potential energy. Values were sometimes as large as the remaining terms in 

the equation. The large residual is due partially to errors in input data, 

especially wind data at high altitudes, but is also due to an inability to 

resolve all of the energy processes with the available input data and computa- 

tional procedures. 

Table 4.3. Average combined internal and potential energy budget for the 
entire AVE III experiment, The AVE area is 49 0 x 1011m2. All . 
nine observation times are included. 

&T)+ m 

m$ 

3. (c$) 

dt + QG 

$ cVW 

Pressure Layer 

mb Wm -2 Wm -2 w m-2 w m-2 Wm -2 Wm -2 

200-100 

300-200 

400-300 

500-400 

600-500 

700-600 

800-700 

900-800 

Sfc-900 

-3.8 9.2 -19.3 

1.4 21.1 -20.1 

0.4 4.5 -12.6 

-7.9 0.7 -7.0 

-11.3 13.5 -4.0 

-21.7 8.1 -2.2 

-27.8 6.5 -1.4 

-29.4 21.1 -1.4 

-35.2 19.9 -2.5 

-261.2 

-284.4 

-192.9 

-125.4 

-118.7 

-352.0 

-237.2 

372.3 

378.1 

-105.7 

13.6 

-18.3 

6.5 

-24.4 

-224.4 

269.0 

-135.9 

-80.0 

-71.2 

-59.0 

-54.4 

-32.4 

-43.3 

-38.9 

20.1 

96.7 

121.3 

Vertical Total -135.4 104.7 -70.5 -821.4 149.1 -61.0 
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4.4.3 Time series profiles 

Time series of terms in the kinetic , internal, and potential energy 

equations show the variability in energy 

upper-level trough moves slowly eastward 

processes that occurs as the 

through the area. 

4.4.3.1 Kinetic energy 

Kinetic energy increases steadily through the middle of the AVE III 

experiment when the wave is nearly centered over the observation network 

at 500 mb (Fig. 4.1). AS this trough and its associated wind speed maximum 

continue eastward out of the area, kinetic energy decreases. Since the wave 

tilts with height, maximum kinetic energy in the surface- to 700-mb layer 

occurs 3-h earlier than in the 700- to 400~mb layer. 

Generation of kinetic energy due to cross-contour flow increases 

through the middle of the experiment (Fig. 4.2). Values increase by a factor 

of five in the 700- to 400~mb layer between 0000 GMT to 1800 GMT 6 February, 

and increase by a factor of two in the 400- to lOO-mb layer. Horizontal flux 

divergence of kinetic energy shows similar increases during the first part of 

the experiment (Fig. 4.3j. Flux divergence decreases greatly during the 

latter portion of the experiment as the trough moves out of the center of 

the experiment area. 

Average vertical motion is upward through 0000 GMT 7 February but 

reverses sign when the trough moves east of the center of the area. Kinetic 

energy in the lower atmosphere is transported aloft during the first seven 

times while downward transport of kinetic energy occurs during the last two 

times (Fig. 4.4). 

Transfer of kinetic energy from grid to subgrid scales of motion in- 

creases greatly above 700 mb during the last two times (Fig. 4.5). Positive 

dissipation, meaning a transfer of kinetic energy from subgrid to grid scales 

of motion, occurs at three times in the middle troposphere. Motions that are 

unresolvable in time and/or space and computational error can contribute to 

positive values of dissipation. During the AVE III experiment, turbulence 

associated with extreme horizontal and vertical wind shear may produce 

positive values. 

As described earlier, generation of kinetic energy due to cross-contour 

flow is very large during the experiment. But, what happens to this generated 

energy? Horizontal transport out of the area is the primary energy Sink 

during the first seven times when this process removes between 33% and 99% 

of the generated energy in the surface- to lOO-mb layer (Fig. 4.6). 
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Dissipation is a much smaller sink during these times; only about 25% of 

the generated kinetic energy is transferred to subgrid scales of motion. 

About 25% of the generated energy is used to increase kinetic energy content. 

Conditions change dramatically after 0000 GMT 7 February when the 

trough moves.east of the center of the area. Dissipation becomes the 

primary energy sink of generated energy with horizontai flux divergence 

assuming a minor role. aK Term at is negative after 2100 GMT 6 February since 

more energy is dissipated and transported out of the area than is generated. 

4.4.3.2 Internal and potential energy 

The time series of generation of internal energy by diabatic effects, 

computed using the thermodynamic equation, is given in Fig. 4.7. Radiative 

effects dominate the generation process; production of internal energy occurs 

during the day and destruction occurs at night. Generation due to latent I 

heat release associated with light precipitation that occurred over much of 

the AVE area during the first half of the experiment is not noticeable in the 

profiles. The heavier precipitation observed during AVE III was confined to 

a relatively small area and contributed little to the average over the network. 

Although latent heat release associated with precipitation certainly creates 

energy, the effects are masked by radiative processes. 

Horizontal flux convergence of internal and potential energy occurs in 

the lower atmosphere during the first three times when the low-level trough 

dominates the circulation (Fig. 4.8). Flux divergence is evident in the lower 

atmosphere during the later times in association with the surface anticyclone 

and eastward movement of the upper-level trough. The 400- to lOO-mb layer 

is generally characterized by horizontal flux divergence through 0000 GMT 

7 February, although several times with relatively weak flux convergence 'also 

are indicated. The layer is characterized by strong horizontal flux conver- 

gence during the last two times. Profiles of vertical flux divergence 

(Fig. 4.9) together with a knowledge of vertical motion fields indicate 

that internal and potential energy are transported aloft through 0000 GMT 

7 February. Downward transport occurs afterward. 

Profiles of cross-contour conversion of energy have been described 

in Fig. 4.2. Although very important to the kinetic energy budget, cross- 

contour conversion is quite small in the internal and potential energy budget 

when compared to the boundary transport processes. The boundary work term 

indicates significant interaction between the limited volume under considera- 

tion with the surrounding atmosphere (Fig. 4.10). 
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Fig. 4-10. Time series of the pressure work term in AVE III. 
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The net effect of generation and transport of internal and potential 

energy can be seen in the local change term (Fig. 4.11). Since horizontal 

and vertical flux divergence and boundary work tend to cancel each other, 

changes in energy are closely related to generation by diabatic effects 

(Fig. 4.7). The variation in cross-contour destruction of available potential 
L 
!: R energy (Fig, 4.2) is relatively small when compared to the diabatic term. 
1 
I 

i 

4.4.4 Energy budgets versus precipitation intensity 
.I Energy conversion and transport processes have been related to the rl 
'; presence and intensity of precipitation by Fuelberg (1977). The procedure 
.: 
: :, was to average grid point values of energy budget terms over ranges of 
1 Manually Digitized Radar (MDR) values for all nine observation times. Results 

of a similar study are described here using the AVR III data. The five 

categories include all 1512 grid points (MDR O-9), 1414 grid points with no 

precipitation or very light precipitation (MDR O-l), 98 points with moderate 

to intense precipitation (MDR 2-9), 48 points with strong to intense precipitation 

(MDR 4-9), and 16 grid points with intense precipitation (MDR 8-9). The 

AVE III data are not as suitable for this type of study as the AVE IV data 

used previously because heavy precipitation is not widespread during AVE III 

and occurs only near the edge of the data area. However, meaningful results 

are obtained for comparison purposes. 

Generation of kinetic energy by cross-contour flow is much greater 

in areas of moderate precipitation than in areas of no precipitation and 

light precipitation (Fig. 4.12). This difference occurs because of the 

different synoptic conditions in which precipitation forms and due to the 

effect of precipitation on the surrounding atmosphere (Danard, 1964; Ninomiya, 

1971a and b; Auburt, 1957). The integrated value in the surface- to 100-x& 

layer is 62.8 W m -2 for the MDR O-l categoryrand 193.5 W m -2 for the MDR 8-9 

category. Similar differences in profiles were obtained using AVE IV 

data (Fuelberg, 1977). 

Horizontal flux divergence of kinetic energy in the upper atmosphere is 

greater for the three precipitation categories than for the remaining two 

categories (Fig. 4.13). Low-level flux convergence occurs in areas of 

moderate to intense precipitation, but this feature is absent in the other 

profiles. Weak vertical flux divergence is associated with the MDR O-9 and 

MDR O-l categories (Fig. 4.14). Upward vertical motion transports energy 

aloft in areas of precipitation. Similar profiles were observed during the 

AVE IV experiment. 
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Profiles of the dissipation term indicate enhanced transfer of kinetic 

energy from grid to subgrid scales of motion in areas of precipitation (Fig. 

4.15). Positive dissipation in the middle troposphere is associated with 

the three categories of precipitation, but this feature is not evident in 

the MDR O-9 and MDR O-l categories (Fig. 4.14). Upward vertical motion 

transports energy &loft in areas of precipitation. Similar profiles were 

observed during the AVE IV experiment. 

Profiles of the dissipation term indicate enhanced transfer of kinetic 

energy from grid to subgrid scales of motion in areas of precipitation (Fig. 

4.15). Positive dissipation in the middle troposphere is associated with the 

three categories of precipitation, but this feature is not evident in the 

MDR O-9 and MDR O-l categories. Again, these features are comparable to those 

reported by Fuelberg (1977) for AVE IV. 

The tabulated kinetic energy budget for the MDR 4-9 category is given 

in Table 4.4. Generation, dissipation, and transport of kinetic energy are 

Table 4.4. Kinetic energy budget for the 48 grid points with MDR values 
between 4 and 9. 

Pressure Layer K aK &k$ awk 
at ap 

-SL$ D 

105J m -2 w m-2 " m-2 w m-2 w m-2 Wm -2 

200-100 14.1 5.2 44.6 2.8 54.9 -2.3 

300-200 11.5 -3.1 55.4 -13.8 57.6 -19.1 

400-300 8.6 -0.2 26.7 -5.2 32.9 -11.6 

500-400 6.0 3.5 17.0 -1.1 21.3 -1.9 

600-500 4.6 5.5 8.2 2.2 15.5 0.4 

700-600 3.1 4.6 1.2 4.7 11.3 -0.8 

800-700 1.9 2.6 -2.5 4.8 7.1 -2.2 

900-800 1.0 0.9 -0.3 2.2 3.6 -0.8 

sfc-900 0.4 0.3 -0.2 0.5 1.8 -1.2 

Vertical Total 51.2 19.3 150.1 -2.9 206.0 -39.5 
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much greater in areas of moderate or intense precipitation than for the 

AVE III area as a whole (Table 1.1). Generation by cross-contour flow is 

offset mostly by horizontal flux divergence. Dissipation of energy is 

far less important. 

Generation of internal energy by diabatic heating is greater in areas 

of precipitation than over the total area (Fig. 4.16). The enhanced generation, 

which reaches a maximum near 650 mb, is due to latent heat release associated 

with precipitation. Large negative values near 200 mb may be due to radiative 

cooling from the tops of clouds. 

Low-level horizontal flux convergence of internal and potential energy 

and vertical flux divergence together with upper-level horizontal flux 

divergence and vertical flux convergence become stronger for the categories 

of more intense precipitation (Figs. 4.17 and 4.18). Similar results oiere 

obtained during the AVE IV experiment. 

The tabulated internal and potential energy budget for grid points with 

MDR values between 4 and 9 (Table 4.5) indicates that generation and transport 

of energy in areas of moderate or intense precipitation are much greater than 

are observed in the AVE III area a's a whole (Table 4.3). 

4.5 Conclusions 

Intense energy conversion and transport processes occur during the 

AVE III experiment when a broad upper-level trough passes over the eastern 

United States. An especially interesting feature is strong generation of 

kinetic energy by cross-contour flow. Much of this generated kinetic energy 

is transported horizontally out of the area. A smaller amount of energy is 

transferred to subgrid scales of motion while even less of the generated 

energy is used to increase the kinetic energy content of the volume. 

Horizontal and vertical transport processes are the largest components of 

the combined budget of internal and potential energy, Generation by 

diabatic heating is small. 

Energy processes near the beginning of the experiment when the upper- 

level trough was approaching the center of the area are considerably different 

from those at the end of the experiment when the trough was near the eastern 

edge of the data network. Rawinsonde data at 3- or 6-h intervals permit a 

detailed temporal description of the energy changes that occur. Cross-contour 

generation and horizontal flux divergence of kinetic energy are a maximum 
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Table 4.5. Combined internal and potential energy budget for the 48 grid 
points with MDR values between 4 and 9. 

i&T) + 
dH $ cvTu) 
dt m$ ?~*(RT G3) 

Pressure Layer + it*& 

Wm -2 Wm -2 w m-2 w m-2 Wm -2 

200-100 

300-200 

400-300 

500-400 

600-500 

700-600 

800-700 

900-800 

Sfc-900 

Vertical Total -149.1 126.9 -206.1 8454.1 -1048.3 1273.6 

-34.5 -72.3 

-7.1 -105.5 

16.7 35.4 

-3.5 43.5 

-5.1 97.3 

-12.7 109.4 

-31.6 2906 

-32.0 11.7 

-39.3 -22.2 

-54.9 

-57.6 

-32.9 

-21.3 

-15.5 

-11.3 

-7-l 

-3.6 

-1.8 

2507.4 

5023.6 

3687.3 

2452.7 

1346.7 

-328.4 

-2366.2 

-1821.3 

-2047.7 

341.2 

-3227.2 

-2657.3 

-1518.9 

-536.7 

585.9 

2514.2 

2065.7 

1384.7 

673.6 

418.7 

194.4 

151.4 

126.5 

-35.2 

-32.9 

49.3 

-272.3 

when the trough is centered over the area, but then decrease in magnitude. 

Upward transport of kinetic energy during the first part of the AVE III 

experiment changes to downward transport toward the end of the period. 

Negative dissipation of energy is greatest toward the end of the experiment 

as the trough exits the area. 

Temporal changes in horizontal and vertical flux divergence of internal 

and potential energy are generally similar to those of kinetic energy. 

Energy generation and transport processes associated with precipitation 

are much larger than those observed for the entire AVE III area. Results are 

similar to those found during the AVE IV experiment. 
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GRADIENTS OF METEOROLOGICAL PARAMETERS DURING AVE III 

Milton S. McCown* 
Department of Meteorology 

Texas A&M University 
College Station, Texas 77843 

ABSTRACT 

Horizontal gradients of geopotential height, temperature, wind speed, 

and mixing ratio were computed at the 850-, 7.00-, SOO-, and 200~mb levels 

(gradients of mixing ratio not computed at 200 mb) and results presented for 

AVE III as was done previously for AVE II and AVE IV. AVE III is a wintertime 

case; AVE II and AVE IV were springtime cases. The results for AVE III are 

essentially the same as those for the other AVEs. 

Mixing ratio gradients are generally largest near convective areas, and 

wind speed gradients at 850 mb tend to be largest near storms as identified 

by Manually Digitized Radar (MDR) data. Differences in the gradients of the 

parameters were observed between convection associated with fronts and that 

associated with squall lines. 

The analysis of HIPLEX data indicated that the magnitude of gradients 

versus distances over which the gradients were computed continued to increase 

as the gradient distances decreased down to about 60 Ian. 

*Presently employed by Climatological Consulting Corporation, Asheville, N.C. 
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CHAPTER 5. GRADIENTS OF METEOROLOGICAL PARAMETERS DURING AVE III 

5.1 Introduction 

In a previous report, M&own and Scoggins (1977) have shown that 

different gradient patterns of various meteorological parameters occur in 

areas where convection is associated with cold fronts and squall lines. These 

conclusions were based upon gradient analyses of the data presented in the 

second and fourth Atmospheric Variability Experiments, which are a continuing 

series of experiments in which data are collected during time periods when 

rapid changes in weather patterns occur. An analysis of the gradients observed 

during the third AVE experiment (AVE III) has now been performed and is the 

primary subject of this report. 

5.2 Analytical Procedures 

5.2.1 Stratification of Data -- 
Gradients were first considered without regard to convective areas and 

were calculated for grid points over distances of 315, 630, and 844 km. 

Cumulative frequency distributions of the computed quantities for each of the 

three distances were determined, , 

In an effort to determine differences in gradients observed in convective 

and nonconvective areas, Manually Digitized Radar (MDR) data were used to 

define convective areas. Overlays of the composite MDR charts were placed 

over the computer-generated parameter grid, and any parameter grid point within 

one-half grid spacing of an MDR block containing a value of 4 or greater was 

considered as a convective area. 

Since distances of 630 km and 944 km were so much larger than the 

storm areas, no attempt was made to classify the horizontal gradients on 

scales this large into either convective or nonconvective areas. Even when 

considering the gradients on a scale as small as 315 km, it should be 

emphasized that for a particular grid point, some of the gradients had to 

be calculated using one or more grid points outside of the convective region. 

Following the designation of each grid point as being in either a 

convective or nonconvective area, cumulative frequency distributions and the 

determination of several statistical parameters were made for the data in 

convective and nonconvective areas over all nine times of the experiment. 

The means of the gradients over convective and nonconvective areas were 
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determined separately for each time, allowing one to see how the mean gradient 

values changed over these areas. The areas on the grid were also subdivided 

into four categories according to the strength of the convection as determined 

from the radar data. These categories and the corresponding MDR values are 

as follows. 

Precipitation category MDR values 

Weak or no precipitation 0, 1 
Moderate precipitation or less 0, 1, 2, 3 
Strong or intense precipitation 4, 5, 6, 7, 8, 9 
Intense precipitation 8, 9 

Statistical studies of the gradients of the meteorological parameters were 

conducted for each of these categories. It should be noted that the category 

labelled "strong or intense convection" is the same category as that of the 

"convective" areas defined by McCown and Scoggins (1977). 

In an effort to concentrate on how the gradients change as storms move 

into (or develop in) an area, the horizontal gradients at grid points, which 

were initially in nonconvective regions but were in convective regions in the 

succeeding time period, were classified as "prestorm" gradients. Similarly, 

grid points which had been in convective areas but were in nonconvective areas 

a time period later, were classified as "poststorm" points. The mean of the 

horizontal gradients in such prestorm or poststorm areas was then compared 

with the mean over the same grid points in the corresponding storm areas a 

time period later, or earlier, than the respective prestonn or poststorm time. 

An extensive investigation involving the change of intensity of storm areas for 

all nine time periods and four pressure levels was performed. The changes 

in intensity of precipitation were subdivided as follows. 

Development 

Prestorm storm 

MDR = 0, 1 to MDR 1 2 

MDR= O,ltoMDRk4 

MDRL3 toMDRk 4 

4LMDRs7toMDR=8,9 

Dissipation 

storm Poststorm 

MDRL 2toMDR= 0,l 

MDRk4toMDR=O,l 

MDR 1 4 to MDR < 3 

MDR= 8,9 to 4 S MDR 5 7 
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5.2.2 Gradients 

The field of any scalar Q(x,y) can be represented by a set of lines 

along which Q is constant. The horizontal ascendant vector, may be 

written as 

(5-l) 

where g is normal to the isolines of Q and in the direction of increasing Q. 

The magnitude of this vector is given by 

(S-2) 

Following the convention of Saucier (1955), the word "gradient" will refer 

hereafter only to the magnitude of the ascendant vector. 

The centered finite difference approximation for the gradient at 

any grid point (i, j) can be calculated by the formula: 

(vnQlij = [(qi+l - qi-1J2 + (qj+l - qj-lJ21’ 

As 
(5-3) 

where As is the spacing between grid points used in the computation. In this 

case, As represents 315 km since the spacing between adjacent grid points is 

approximately 157.5 km. Gradients over the distances of 630 km and 944 km 

also were calculated by considering the values of the parameters at grid 

points of i+2, i-2, j+2, j-2, and i+3, i-3, j+3, and j-3, respectively. 

Gradients hereafter will be expressed as differentials (not divided by As), 

or as changes per unit distance (divided by As). 

Geopotential height, temperature, and wind speed gradients were calculated 

at 850, 700, 500, and 200 mb for each of the three different distances, and 

for all times. Mixing ratio gradients were similarly computed, but only for 

the 850-, 700-, and SOO-mb levels. The solid line in Fig. 5.1 represents 

the outer boundary of grid points used in computing the gradients observed 

for each of the three distances. For each time, there were 99 grid points 

for the 315-km distance, 63 for the 630-km distance, and 35 for the 944~km 

distance. 

5.2.3 Statistical parameters 

Several statistical techniques were employed in evaluating the data. 

These included the use of cumulative frequency distributions, sample mean and 

median as measures of central tendency, and the standard deviation, coefficient 
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Fig. 5.1. Boundaries encompassing grid points at which gradients 
over 315, 630, and 944 lcn were computed. 

of variation, and skewness as indicators of the dispersion and variability 

of the data. In preparing cumulative frequency distributions, the data were 

first grouped into 20 consecutive, equally-divided class intervals, and the 

cumulative percent up to the upper limit of each interval determined. Such 

distributions can be plotted on probability graph paper which can be used 

to determine how well a given distribution can be fit to a normal distribution. 

Used as a measure of central tendency of the data, the mean is the 

arithmetic average of all the values. The median is the [(n + 1)/2)]th 

observation when the values are arranged in order of magnitude. Since the 

50th percentile on a cumulative frequency distribution represents the median, 

median values in this study were approximated by using an interpolative 

method as described by Ostle and Mensing (1975). 

The most familiar measure of the variability of data is the standard 

deviation, and is defined by 

N 
s = [ C (x. - T12/N]1'2, 

i=l 1 
(5-4) 
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where x i represents the ith observation of a set of numbers, !Z represents the 

mean, and N is the total number of observations. The coefficient of variation, 

CV, is a measure of the dispersion of the data, and is useful in comparing 

series of data that are measured in different units. The variation is ex- 

pressed as a fraction of the mean and is defined as CV = s/E. Skewness, a 

measure of the asymmetry of a distribution, was not calculated directly, but 

the sign of the skewness was indicated by the relative magnitude of the mean 

and median values. In symmetric distributions , the median and mean coincide. 

In cases where the median is less than the mean, positive skewness is indicated, 

and in cases where the reverse is true, there is negative skewness. 

5.3 Results for AVE III 

5.3.1 Convective versus nonconvective areas 

Table 5.1 contains values of statistical parameters computed for the 

gradients in both convective areas and nonconvective areas of AVE III. The 

gradients were computed over 315 h distances. 

Geopotential height gradients increased with height in both convective 

and nonconvective areas, and standard deviations were approximately lo-40% 

as large as the mean. At all levels the mean (average) height gradients were 

larger in the nonconvective areas than in the convective areas. 

Mean temperature gradients at all levels below 200 mb were larger in 

the nonconvective areas than in convective regions, while at 200 mb the reverse 

was true. In both convective and nonconvective areas the largest mean 

gradients occurred at 850 mb. In the nonconvective areas the temperature 

gradients tended to decrease with height while the variability (as expressed 

by the coefficient of variation) generally increased. The mean temperature 

gradients in the convective areas also tended to decrease with height to 

500 mb, and then increased between 500 and 200 mb. The variability did not 

appear to be a function of height in the convective areas. 

Mean wind speed gradients in both convective and nonconvective areas 

increased with height. At all levels the mean gradients were larger in the 

convective than in nonconvective areas; however, the variability, as expressed 

by the coefficient of variation, was larger at all levels in the nonconvective 

areas than in convective areas. 

Mean mixing ratio gradients were larger in the convective areas than 

elsewhere. As expected, the mean gradients generally decreased with height. 

The coefficient of variation was large at all levels in both areas indicating 
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Table 5.1. Selected statistical parameters of gradients in convective and 
nonconvective areas of AVE III. 

Parameter 
Convective Areas Nonconvective Areas 

Mean Standard Coefficient Mean Standard of Coefficient 
Deviation of Variation Deviation of Variation 

I 
Geopotential 
Height [m(315 kmImll [ml315 km)-l] 

850 mb 28.8 6.7 .23 33.6 10.9 .32 
700 mb 49.4 11.0 .22 52.2 16.8 .32 
500 nlb 69.5 19.0 -27 85.8 34.5 .40 
200 mb 140.7 36.3 .26 143.9 42.7 .30 

Temperature -1 [OC(315 km) ] [OC(315 kmp-I 

850 mb 3.8 1.7 .45 5.2 2.6 .50 
700 mb 2.6 1.7 .65 4.0 1.9 .48 
500 ml.3 2.1 0.7 .33 4.0 2.9 .73 
200 mb 3.6 2.1 .58 2.4 1.7 .71 

Wind Speed [m s-l(315 km)-l] [m ~~~(315 km)-'] 

850 mb 4.4 2.2 .50 3.6 2.2 .61 
700 lnb 7.2 2.6 .36 5.9 3.7 .63 
500 mb 11.2 2.6 .23 9.9 7.6 .77 
200 mb 12.2 4.4 .36 10.8 5.9 .55 

Mixing Ratio [g kg-l(315 km)-l] [g kg-l(315 km)-+ 
850 mb 2.8 1.4 -50 1.1 0.9 .82 
700 ml3 2.0 1.2 .60 0.9 0.8 .89 
500 mb 0.8 0.5 .63 0.3 0.3 1.00 



a large variability in the gradients. Larger variability occurred in non- 

convective than in convective areas. 

5.3.2 Probability of magnitudes of gradients - - 
Cumulative frequency distributions were computed without regard to con- 

vective areas for gradients over 315-, 630-, and 944-Ion distances. As was 

done for AVE II and AVE IV (McCown and Scoggins, 1977), the distributions at 

each level were plotted on probability graph paper. 

Cumulative frequency distributions of gradients are shown in Figs. 

5.2, 5.3, 5.4, and 5.5 for geopotential height, temperature, wind speed, and 

mixing ratio, respectively. The geopotential height frequency distributions 

generally exhibit an increase in the magnitude of the gradients with height. 

The temperature gradients are irregularly distributed with the mean gradients 

of temperature decreasing with height; however, the largest 10% of the 

gradients at 500 mb are as large as the largest 10% at 850 mb, even though 

50% of the gradients at 500 mb are 3'/315 km or smaller, while only 20% of the 

gradients at 850 mb are only 3O/315 Ian or less. Plots of the frequency dis- 

tributions of wind speed gradient reveal a tendency toward larger gradients as 

higher levels are considered, but the largest 15% of the gradients at 500 mb 

are stronger than the largest 15% of the gradients at 200 mb. The mixing ratio 

gradients are also somewhat irregularly distributed, though the decrease in the 

magnitude of the gradient with height should be noted. At 850 and 700 mb, 

80% of the gradients were less than 1.5 gm kg -l (315 km)-l , while the maximum 
-1 values were 5.6 and 4.4 gm kg (315 km)-l , respectively. 

5.3.3 Magnitudes of gradients in the vicinity of convection - -- - 
The mean magnitudes of gradients were calculated for areas before and 

after convection and were compared to the respective storm areas, as was done 

previously for AVE II and AVE IV. The results from this investigation are 

presented in Table 5.2. 

Except at 200 mb, geopotential height gradients increased as the storms 

developed and the maximum gradients occurred in the poststorm areas. At 200 

mb, the maximum height gradients occurred just after the storms had formed. 

Temperature gradients were largest generally during the storms, except at 

850 mb where the maximum gradients occurred in the poststorm areas. Maximum 

wind speed gradients at 850 and 700 mb occurred either before the storms or 

immediately after the storms formed, but at 500 and 200 mb the maximum 

gradients occurred in the rear portion of the storm area or in the poststorm 

region. Maximum mixing ratio gradients at all levels occurred generally in 

the storm or poststorm areas. 
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Table 5.2. Means of gradients in AVE III over areas in which the status of convection changed. 

Geopotential 
Height 

850 mb 
700 mb 
500 mb 
200 nlh 

s Temperature 

850 mb 
700 mb 
5oomb 
200 mb 

Wind Speed 

850 mb 
700 mb 
500 mb 
200 mb 

Mixing Ratio 

850 mb 
700 mb 
500 mb 

*Number of grit 

Prestorm - Storm (Means of Gradients) 

Prestonn (MDR<3) storm (MDQ4) 

[m(315 km)-ll 

22.9 (16)* 26.8 
42.3 50.5 
62.5 74.1 

122.1 142.1 

[OC(315 km)-+ 

3.6 3.9 
2.6 3.1 
1.8 2.0 
2.4 3.0 

[m s-l(315 km)-'] 

3.9 5.1 
6.8 5.9 
9.8 11,5 
9.9 11.2 

[g kg-l(315 km?] 

2.8 2.1 
2.2 2.8 
0.6 0.5 

points 

storm - Poststorm (Means of Gradients) 

storm (MD%41 Poststorm (MDRs3) 

[m(315 km)-ll 

29.2 (18) * 30.6 
50.9 55.2 
73.0 80.4 

137.7 136.4 

[OC(315 h1-l 
1. 

4.3 
2.9 
2.4 
2.8 

1 
5.0 
3.0 
1.7 
2.0 

[m s-l(315 km) -ll 
3.3 3.6 
6.4 6.7 

11.7 13.1 
12.6 12.3 

[g kg-l(315 km)-+ 

3.2 2.5 
1.8 2.2 
0.8 0.8 



Analyzed fields.,of the gradients are shown to give some idea of the 

structure of the gradient patterns in AVE III. As was done for the previous 

AVIZ experiments, only 850 and 500 mb fields for the time in which the maximum 

convection occurred will be presented. In AVE III the most widespread con- 

vection occurred at 2100 GMT 6 February 1975, and the MDR composite for this 

time is shown in Fig. 5.6. 

Fig. 5,7 shows the analyzed height gradient fields. The stippled areas 

on the analyzed charts indicate areas of convection. As was noted in Table 

5.2, maximum height gradients near the areas of convection occurred following 

the storms. At 850 mb, the maximum gradients on the grid occur near central 

Iowa and are not associated with precipitation of any kind, but a secondary 

maximum occurs over southwest Georgia which appears to be associated with the 

convection. At 500 mb, the maximum gradients on the grid occur over central 

Georgia and Alabama and to the rear of the convective area. 

Analyzed temperature gradient fields are presented in Fig. 5,8. At 

850 mb the maximum gradients on the grid occur from northern Georgia south- 

westward into central Alabama and are positioned in the poststorm region, 

while over the convective area itself, the gradients are relatively weak. At 

500 mb, the maximum gradients on the grid occur well away from any convective 

activity, while near the convection the gradients are relatively weak. 

Figure 5.9 shows the analyzed gradient fields of wind speed. At 

850 mb the wind speed gradient was relatively weak throughout most of the 

AVJZ III grid. The strongest gradients were only 10 m -l s (315 km)-l and 

were occurring in the Texas Panhandle away from any convection. At 500 mb, 

a strong jet with speeds of 55 m s -1 lay from central Alabama into central 

North Carolina. Wind speed gradients of 35 m s -l (315 km)-l were noted on the 

western side of the jet and near 20 m -' s (315 la"") between the jet and the 

convective area. Over the convective area itself, the gradients were about 

10 m -l s (315 km)? 

Analyzed fields of mixing ratio gradient are presented in Fig. 5.10. 

At 850 mb, the maximum gradients occurred ahead of the storms, but at most 

other time periods the maximum occurred to the rear of the storms. At 500 mb, 

the strongest mixing ratio gradients were occurring near the storms, but in 

general the largest gradients occurred in the rear portion of the storm area. 
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(a> 850 mb 

(b1 500 mb 

Fig. 5-7. Geopotential height gradient fields [m(315 km)-l] 
at 2100 GMT 6 February 1975. 
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Fig. 5-8. Tempekatur& gradient fields ['C(315 IUII)-~] at 
2100 GMT 6 February 1975. 
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Fig. 5-9. Wind speed gradient fields [m s -l(315 hn)-1] at 
2100 GMT 6 February 1975. 
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Fig. 5-U. Mixing ratio gradient fields [g kg-l(315 km)-1] 
at 2100 GMT 6 February 1975. 
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5.4 Comparison of AVE II, AVE III, and AVE IV 

5.4.1 Convective and nonconvective areas 

In a previous report.(McCown and Scoggins, 19771, the differences in 

the synoptic situations of AVE II and AVE IV have been discussed, and it was 

concluded that these differences had an impact upon the gradients near the 

convective areas. The synoptic situations of AVE II and AVE III were similar 

in that convection was occurring ahead of a major trough with seasonably cold 

air pushing southeastward over most of the United States. 

Since the synoptic situations of AVE II and AVE III were so similar, 

it may be expected that the two cases would agree as to whether gradients of 

a particular parameter were larger in convective or nonconvective areas of 

each experiment. To a large degree this was' true. Mean geopotential height 

gradients at 700, 500, and 200 mb, and mean temperature gradients at 850, 

700, and 500 mb were larger in the nonconvective areas than in convective 

areas in both AVE II and AVE III. Many of these results should be expected 

since the convection was occurring in conjunction with the polar front. Since 

convection occurred ahead of and near the surface frontal position and cold 

fronts slope so that warm air overlies colder air, the upper level front 

sloped away from the convection. Thus, temperature and consequently height 

gradients were larger in the nonconvective areas. Mean 850 and 700 mb wind 

speed and 700 and 500 mb mixing ratio gradients were larger in convective 

than nonconvective regions in both cases. 

AVE IV contained an entirely different synoptic situation than was 

present in the other AVE experiments. Consequently, there were major dif- 

ferences between AVE IV and the other AVE experiments on the question of 

whether the convective or nonconvective areas had the larger mean gradients. 

In AVE IV, there was no strong major trough aloft and the convective areas 

all formed along weak fronts and eventually moved eastward as pre-frontal 

thunderstorms. Height, temperature, and mixing ratio gradients at all levels 

were larger or equal in the convective regions than elsewhere in AVE IV, Wind 

speed gradients at 850 and 200 mb in AVE IV were larger in the convective 

areas, but at 700 and 500 mb the mean gradients were larger in the nonconvective 

areas. 

Comparing the magnitudes of the gradients in the convective and non" 

convective areas of each AVE experiment with the other AVE experiments iS al.50 

instructive. Comparing Tables 1 and 2 in a previous report by McCown and 
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Scoggins (1977) with Table 5.1 of this report, one finds that in the noncon- 

vective areas the temperature gradients at 850, 700, and 500 mb and consequently 

the height gradients at 500 and 200 mb, were largest in AVE III, but mixing 

ratio gradients in the nonconvective areas were smallest in that experiment. 

Considering the fact that AVE III is a mid-winter situation with strong 

temperature contrasts and very dry air, such results are expected. Wind speed 

and mixing ratio gradients in the nonconvective areas were equal or larger at 

all levels in AVE II than in either of the other AVE experiments. 

Comparing the mean gradients in the convective areas using the tables 

described above, one finds that the largest height, temperature (with the 

exception of 500 mb), and wind speed gradients in the upper two levels occurred 

in AVE III. In the lower two levels, the largest height gradients occurred 

in AVE II. At 850 mb, the largest wind speed gradients in the convective 

areas were present in AVE IV, indicating the presence of a low-level jet. 

As was the case in the nonconvective areas, the smallest mixing ratio gradients 

were found in AVE III and the largest in AVE II. 

5.4.2 Magnitudes of gradients in the vicinity of convection - -w - 
As was noted previously, the synoptic situations of AVE II, particularly 

in the midwest, and that of AVE IV were similar. The,;synoptic situations in 

the southeast portion of AVE II and AVE IV differ from the others in that 

squall lines formed in those regions without major troughs in the upper levels 

following them. These differences in the synoptic conditions caused minor 

variations in the pattern of the magnitude of the gradients as the status of 

convection changed, 

By comparing Tables 8 and 9 of the previous report (McCown and Scoggins, 

1977) with Table 5.2 of this report, it can be seen that the height gradients 

were largest in the poststorm areas at 850 and 500 mb in AVE III and the 

midwest United States in AVE II. Temperature gradients at 850 and 500 mb, wind 

speed gradients at 500 mb, and mixing ratio gradients at 850 mb were also 

largest in the rear portion of the storm area or in the poststorm region. 

Such results are suggestive of the polar front structure as described by 

Palmen and Newton (1969). The sloping baroclinic zone tends to be positioned 

near the baroclinic zone in the upper levels. Thus, wind speed gradients 

increase following the convection. Wind speed gradients at 850 mb were 

largest before the storms or in the storm's forward portion. 
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The main difference in gradient patterns between the frontal cases 

mentioned above and the squall line cases in the southeast United States region 

of AVE II and AVE IV occurs in height and wind speed gradients. In the squall 

line cases, maximum height gradients at 850 and 500 mb occurred before or 

during the storm, instead of afterwards as in the frontal cases. Temperature 

gradients in the squall line situations were largest during the storms at 

850 mb, and during or after the storms at 500 mb. Maximum wind speed gradients 

at 850 mb occurred in the rear portion of the storm areas in the squall line 

cases as opposed to before or during the,stonns in the frontal cases. At 

500 mb the largest wind speed gradients occurred in the poststorm region. The 

strongest mixing ratio gradients generally occurred in the rear portion of the 

storm areas or over the poststorm areas at both 850 and 500 mb, but at 850 mb 

in the southeast United States region of AVE II the mixing ratio gradients 

were strongest before the storms. 

At 500 mb, both the squall line and frontal cases suggest that 

temperature, wind speed, and mixing ratio gradients are largest following 

the storms. Such a finding is consistent with results obtained from previous 

thunderstorm studies by Ninomiya (1971) and Miller (1967). 

5.5 Magnitudes of Gradients versus Distance for AVE and HIPLEX Data 

In order to obtain generalized information about expected magnitudes of 

gradients of atmospheric parameters versus distance, selected percentile values 

of the gradient magnitudes were plotted versus the distance over which the 

gradients were measured. In an effort to examine how gradients varied over 

shorter distances than was possible using synoptic-scale rawinsonde data from 

the three AVE experiments, data from the Texas HIPLEX Mesoscale Experiment 

(Scoggins and Wilson, 1976) of summer 1976 were used to supply information 

about mesoscale gradients. 

The HIPLEX area contained a mesoscale network of surface stations 

plus four rawinsonde stations. Three of the rawinsonde stations (Midland, 

Post, and Robert Lee) nearly form an equilateral triangle, and Big Spring is 

located near the triangle's center. An overall-gradient value was computed 

for each observation time over a distance of 63 km near the center of the 

triangle for the same parameters and levels considered during the AVE investi- 

gations. Nine of the fourteen operational days (June 22, 23, 25, and 28 plus 

July 1, 3, 8, 10, and 11) were selected, and the gradient values were determined 
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for each of five times beginning at 1500 GMT and continuing at consecutive 

3-h intervals until 0300 GMT the next day. With the exception of June 28, 

all the operational days were conducted when there was shower or thundershower 

activity in the general HIPLEX area. Due to the fact that HIPLEX was conducted 

during a summertime situation, the gradients should be expected to be some- 

what weaker than the gradients encountered during the AVE experiments. The 

data reduction schemes of both HIPLEX and AVE are similar, using the same 

objective analysis technique. 

Figure 5.11 shows plots of the 30, 70, and 99 percentile values of 

height gradients versus distance for the 850-, 700-, 500-, and 200-mb levels. 

The chosen percentile values had to be spaced somewhat widely apart, and even 

then there was considerable overlapping of those values between the various 

AVE experiments. The plots reveal that height gradients for the AVE experiments 

presented a wider range of values over the 315-km distance than for the other 

distances. There was considerable overlapping of the different percentile 

values of the gradients computed over the 944-km distance and in the upper 

levels of the atmosphere. Such overlapping may be expected since the three 

AVE experiments represent widely-varying synoptic situations. The percentile 

values of the gradients computed for the HIPLEX area are considerably smaller 

than the simple extrapolation of the percentile curves developed for the AVE 

experiments. One obvious reason for this difference is that the HIPLEX 

gradients were computed during mid-summer when the gradients should be 

expected to be smaller. 

Plots of percentile values of temperature gradient are shown in 

Fig. 5.12. As with height gradients, the percentile values overlapped when 

the gradients were considered over the larger distances and in the upper 

levels of the atmosphere. Especially wide bands of the 99 percentile value 

are noted at 500 and 200 mb, indicating a wide variability of the expected 

maximum temperature gradients at those levels. At nearly all levels, the 

HIPLEX gradient percentile values occur within the lower values of the 

appropriate percentile "envelope" established by extrapolation of the curves 

from the AVE experiments, which may be expected because of the lower-gradient 

summer situation occurring during HIPLEX. 

Figure 5.13 shows plots of percentile values of wind speed gradient 

versus distance for each of the four levels. Unlike the height and temperature 

gradient percentile envelopes, the wind speed gradient percentile values do not 
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overlap to any appreciable degree. The 99 percentile values get much larger 

with height and over shorter distances indicating the presence of limited 

areas with high horizontal speed shear. As with the temperature gradient 

values, the HIPLEX wind speed gradient percentile values :generally occur 

within the extrapolated envelope values established by the AVE experiments. 

The 99 percentile values are an exception to this with the HIPLEX value in 

all cases except 200 mb being larger than expected from the AVE curves, 

indicating small areas of very high speed shear. The percentile envelopes 

established at 700 mb by the AVE experiments are extremely narrow and judging 

from the curves at other levels, should be much broader. 

Percentile values of mixing ratio gradient versus distance are given in 

Fig. 5.14. Considerable overlap of the 30 and 70 percentile envelopes occurs 

at all levels indicating a wide variability of the gradient values in varying 

synoptic situations. The HIPLEX percentile values are on the upper limits 

of the extrapolated envelopes established by the AVE curves. This is expected 

since the HIPLEX region is located in an area affected by the southwest dry- 

line phenomena where large mixing ratio gradients occur. 

In conclusion, the 30, 70, and 99 percentile envelope values established 

by the three AVE experiments are representative of the gradient distributions 

expected in the atmosphere. The fact that the percentile values were obtained 

from two high-gradient situations (AVE II and AVE III), and one fairly low- 

gradient situation (AVE IV), indicates these envelopes should be representative 

of most situations. Furthermore, since the HIPLEX percentile values (with the 

exception of height gradients) generally fall within the envelopes established 

by the AVE experiments, it appears that the AVE curves may be validly extended 

down to gradient distances of 60 km. In all cases, except for height gradients, 

the mean gradients tend to increase as smaller distances are considered. 

5.6 Summary and Conclusions 

An analysis of the gradients of four atmospheric variables was performed 

using AVE III data. The procedure applied was exactly the same as was done for 

AVE II and AVE IV data. 

The conclusions reached using AVE III data are essentially the same as 

was reached by a study of AVE II and AVE IV. In general, the cumulative 

frequency distributions for each parameter are usually similar in shape, but 

not necessarily in magnitude. Mixing ratio gradients are generally largest 

near convective areas, and wind speed gradients at 850 mb tend to be largest 
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near storms. Except for wind speed gradients at 850 mb, the gradients of 

all parameters at 850 and 500 mb are larger following convection if the storms 

are frontal in nature. In the case of squall lines, the largest gradients 

occur during or after the storms with the exception of 850 mb height gradients, 

which are largest ahead of the convection. 

Plots of percentile frequency values versus the distance over which 

the gradients were measured indicate on the basis of HIPLEX data that the 

gradients of most parameters continue to increase down to distances of 60 km. 

The percentile values selected tended to overlap when long distances and upper 

atmospheric levels were considered. 
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APPENDIX 

Composite MDR charts for all time periods of AVE III. 
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Composite MDR chart for 2300, 0000, and 0100 GMT 6 February 1975. 
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Cmposite MDR chart for 1100, 1200, and 1300 GMT 6 February 1975. 



Composite MDR chart for 1400, 1500, 
and 1600 GIKC 6 February 1975. 



Cornpos.ite MDR chart for 1700, 1800, 
and 1900 GMT 6 February 1975. 
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Composite MDR chart for 2000, 
2100, and 2200 GMT 6 February 1975. 
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Composite MDR chart for 0500, 0600, and 0700 GMT 7 February 1975. 
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